第1个回答 2013-01-20
二次函数(quadratic function)是指 未知数 的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。一般地,把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0,bc可以为0)的函数叫做二次函数(quadratic function),其中a称为二次项系数,b为一次项系数,c为常数项。x为 自变量 ,y为因变量。等号右边自变量的最高次数是2。二次函数图像是 轴对称 图形。对称轴为直线 x=-b/2a. 顶点坐标[-b/2a,4ac-b平方/4a]
注意 :“ 变量 ”不同于“ 自变量 ”,不能说“二次函数是指自变量的最高次数为二次的多项式函数”。“ 未知数 ”只是一个数(具体值未知,但是只取一个值),“ 变量 ”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数的关系。
函数性质
y的范围:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:当b=0时为 偶函数 ,当b≠0时为非奇非偶函数 。
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶最值:(-b/2a,(4ac-b^2;)/4a);
⑷Δ=b2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
特殊地,Δ=4,顶点与两零点围成的三角形为等腰直角三角形;Δ=12,顶点与两零点围成的三角形为等边三角形。②y=a(x-h)2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
增减性
当a>0且y在对称轴右侧时,y随x增大而增大,y在对称轴左侧则相反
当a<0且y在对称轴右侧时,y随x增大而减小,y在对称轴左侧则相反
表达式
一般式
·
y=ax2+bx+c(a≠0,a、b、c为常数), 顶点坐标 为[-b/2a,(4ac-b2)/4a]
把三个点代入函数解析式得出一个二元二次方程组,就能解出a、b、c的值。
顶点式
·
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k.有时题目会指出让你用 配方法 把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3120)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,-h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左 平移 。
记住,左同右异。同号在左,异号在右。
交点式
·
y=a(x-x1)(x-x2) (a≠0)[仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的 抛物线 ,即b2-4ac≥0].
已知 抛物线 与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。∵x+x=-b/a x1·x=c/a(由韦达定理得)
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1+x2)x+x1*x2]=a(x-x1)(x-x2)
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的 绝对值 可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。