调速控制器是如何控制电机的

原理?实现方法?

第1个回答  2015-08-03
1、电磁调速是控制的平频(Hz)电压不变的。
2、控制器(英文名称:controller)是指按照预定顺序改变主电路或控制电路的接线和改变电路中电阻值来控制电动机的启动、调速、制动和反向的主令装置。由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的"决策机构",即完成协调和指挥整个计算机系统的操作。
第2个回答  2012-02-15
调速分为直流电机(用脉宽来调,一般不用降压调),交流电机用(提高频率来调,也叫变频调速)
第3个回答  2012-02-14
电磁调速是控制的平频(Hz)电压不变的追问

能解释的明白的吗?我非专业的,谢谢

追答

电磁调速异步电动机(滑差电机) 电磁调速异步电动机又称滑差电机,它是一种恒转矩交流无级变速电动机。由于它具有调速范围广、速度调节开滑、起动转矩大、控制功率小、有速度负反馈、自动调节系统时机械特性硬度高等一系列优点.电磁调速异步电动机结构与工作原理 电磁调速异步电动机是由普通鼠笼式异步电动机、电磁滑差离合器和电气控制装置三部分组成。异步电机作为原动机使用,当它旋转时带动离合器的电枢一起旋转,电气控制装置是提供滑差离合器励磁线圈励磁电流的装置。它包括电枢、磁极和励磁线圈三部分。电枢为铸钢制成的圆筒形结构,它与鼠笼式异步电动机的转轴相连接,俗称主动部分;磁极做成爪形结构,装在负载轴上,俗称从动部分。主动部分和从动部分在机械上无任何联系。当励磁线圈通过电流时产生磁场,爪形结构便形成很多对磁极。此时若电枢被鼠笼式异步电动机拖着旋转,那么它便切割磁场相互作用,产生转矩,于是从动部分的磁极便跟着主动部分电枢一起旋转,前者的转速低于后者,因为只有当电枢与磁场存在着相对运动时,电枢才能切割磁力线。磁极随电枢旋转的原理与普通异步电动机转子跟着定子绕组的旋转磁场运动的原理没有本质区别,所不同的是:异步电动机的旋转磁场由定子绕组中的三相交流电产生,而电磁滑差离合器的磁场则由励磁线圈中的直流电流产生,并由于电枢旋转才起到旋转磁场的作用。 1-原动机 2-工作气隙 3-主轴 4-输出轴 5-磁极 6-电枢 电磁滑差离合器的机械特性可近似地用下列经验公式表示: n=n0-KT2/I4f 式中:n0-离合器主动部分(鼠笼电动机)的转速; n-离合器从动部分(磁极)的转速; If-励磁电流; K-与离合器结构有关的系数; T-离合器的电磁转矩。 当稳定运行时,负载转矩与离合器的电磁转矩相等。:1,有特殊要求(如轮转机)时亦可达50:1;

第4个回答  推荐于2019-02-22
  调速控制器按其工作原理
  按其工作原理的不同,可分为机械式,
  气动式,液压式,机械气动复合式,机械液压复合式和电子式等多种形式。但目前应用最广的当属机械式调速器,其结构简单,工作可靠,性能良好。
  液压调速器在感应元件和油量调节机构之间加入一个液压放大元件(液压伺服器),使感应元件的输出信号通过放大元件再传到油量调节机构上去,因此也叫间接作用式调速器。
  液压放大元件有放大兼执行作用,主要由控制和执行两个部分组成。
  1、无反馈的液压调速器
  其工作原理如下:
  当负荷减小时,由曲轴带动的驱动轴转速升高,飞球的离心力增加,推动速度杆右移。
  于是,摇杆以A点为中心逆时针转动,滑阀右移,压力油进入伺服器油缸的右部空间。与此同时,油缸的左部空间通过油孔与低压油路相通,其中的油被泄放。在压差的作用下,伺服活塞带动喷油泵齿条左移,以减少供油量。当转速恢复到原来数值时,滑阀也回到中央位置,调节过程结束。
  当负荷增加,转速降低时,调速过程按相反方向进行。
  从上述分析可知,调速器飞球所产生的离心力仅用来推动滑阀,因而飞球的重量尺寸就可以做得较小。而作为放大器的液压伺服器的作用力,则可根据需要,选择不同尺寸的伺服活塞和不同滑油压力予以放大。
  但是,在这种调速器中,因为感应元件直接驱动滑阀,无论它朝哪个方向往动,均难准确地回到原来位置而关闭油孔。这样就使柴油机转速不稳定,而产生严重的波动。
  为了使调速器能稳定调节,在调速器中还要加入一个装置,其作用是在伺服活塞移动的同时对滑阀产生一个反作用,使其向平衡的位置方向移动,减少柴油机转速波动的可能性。这种装置称为反馈机构。
  2、具有刚性反馈机构的液压调速器
  在固定的铰链上,而是与伺服活塞的活塞杆相连。这一改变使感应元件、液压放大元件和油量调节机构之间的关系发生如下的变化。
  当负荷减小时,发动机转速升高,飞球向外张开带动速度杆向右移动。此时伺服活塞尚未动作,因此反馈杠杆AC的上端点A暂时作为固定点,杠杆 AC绕A反时针转动,带动滑阀向右移动,把控制孔打开,高压油便进入动力缸的右腔,左腔与低压油路相通。这样高压油便推动伺服活塞带动喷油调节杆向左移动,并按照新的负荷而减少燃油供给量。
  在伺服活塞左移的同时,杠杆AC绕C点向左摆动与B点相连接的滑阀也向左移动,从而使滑阀向相反的方向运动。这样在伺服活塞移动时能对滑阀运动产生了相反作用的杠杆装置称为刚性反馈系统。当调节过程终了时,滑阀回到了起始位置,把控制油孔关闭,切断通往伺服油缸的油路。这时伺服活塞就停止运动,喷油泵调节杆随之移动到一个新的平衡位置,发动机就在相应的新负荷下工作。因此,相应于发动机不同的负荷,调速器就具有不同的稳定转速。因为发动机负荷变化时需要改变供油量,所以A点位置随负荷而变。
  调速器(图3)
  调速器(图3)
  与滑阀相连接的B点在任何稳定工况下均应处于原来的位置,与负荷无关。这样C点的位置必须配合A点作相应的变动,因而导致了转速的变化。假如当负荷减小时,调速过程结束后,滑阀回到中间原来位置时,伺服活塞处于减少了供油量位置,使A点偏左,C点偏右,因C点偏右,弹簧进一步受压,只有在稍高的转速下运转才能使飞球的离心力与弹簧压力平衡。这说明负荷减小时稳定运转后,柴油机的转速比原来稍有升高。同理,当负荷增加时,稳定运转后,柴油机的转速比原来稍有降低。具有 刚性反馈的液压调速器,可以保证调速过程具有稳定的工作特性,但负荷改变后,柴油机转速发生变化,稳定调速率d不能为零。
  如果要求负荷变化时即要调速过程稳定,又能保持发动机转速恒定不变(即入就必须采用另一种带有弹性反馈系统的液压调运器。
  3、具有弹性反馈的液压调速器
  它实际上是在"刚性反馈"装置中加入一个弹性环节--缓冲器和弹簧。弹簧的一端同固定的支点相连,而另一端则与缓冲器的活塞相连。缓冲器的油缸同伺服器的活塞成刚体联接。
  当发动机负荷减小时,转速增大,飞球的离心力增加。同样,滑阀右移,而伺服活塞则左移,减少喷油泵的供油量。当活塞的运动速度很高时,缓冲器和缓冲活塞就象一个刚体一样地运动。随着伺服活塞5的左移,缓冲器和AC杠杆上的A点也向左移动。这一过程和上述刚性反馈系统的调速器完全相同。但当调速过程接近终了时,滑阀已回到原来的位置,遮住了通往伺服油缸的油路,此时缓冲器和伺服活塞已停留在新负荷相应的位置上。被压缩的弹簧由于有弹性复原的作用,因此使A点带动缓冲器活塞相对于缓冲器油缸移向右方,回到原来位置。缓冲活塞右方油缸中的油经节流阀流到左方。于是,AC杠杆上的各点都恢复到原来的位置,此时调速器的套筒亦因转速复原而回到原来的位置。这样,发动机的转速就保持不变,当负荷增加时,动作过程相反。这种调速器的稳定调速率d为零。本回答被网友采纳
第5个回答  2012-02-14
调速控制器是如何控制电机的v
相似回答