计算圆的直径、周长和面积。圆的半径从键盘输入,圆周率分别取3.14和3.1415926。

如题所述

第1个回答  2013-12-28
半径的平方乘3.14
第2个回答  2013-12-25
阿萨德神神叨叨是事实上是顶顶顶
第3个回答  推荐于2017-10-02
π即圆周率。
圆周率,一般以π来表示,是一个在数学及物理学中普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
目录
1简介
记号
定义
2历史发展
实验时期
几何法时期
分析法时期
计算机时代
3特性和相关公式
几何
代数
数学分析
数论
概率论
统计学
物理学
4趣闻事件
1简介
圆周率(π,读作pài)是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。[1]
记号
π是第十六个希腊字母的小写。π这个符号,亦是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率[2]。1736年,瑞士大数学家欧拉也开始用π表示圆周率。从此,π便成了圆周率的代名词。[3]
要注意不可把π和其大写Π混用,後者是指连乘的意思。
定义
π一般定义为一个圆形的周长

与直径

之比:



由相似图形的性质可知,对于任何圆形,

的值都是一样。这样就定义出常数


第二个做法是,以圆形半径为边长作一正方形,然後把圆形面积和此正方形面积的比例订为

,即圆形之面积与半径平方之比。
定义圆周率不一定要用到几何概念,比如,我们可以定义π为满足sin x = 0的最小正实数x。
这里的正弦函数定义为幂级数

2历史发展
实验时期
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。[4]同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。[4]埃及人似乎在更早的时候就知道圆周率了。 英国作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。[5]
几何法时期
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。[6]汉朝时,张衡得出

,即

(约为3.162)。这个值不太准确,但它简单易理解。[7]
公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率


公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率

和约率

。密率是个很好的分数近似值,要取到

才能得出比

略准确的近似。[8](参见丢番图逼近)
在之后的800年里祖冲之计算出的π值都是最准确的。其中的密率在西方直到1573年才由德国人奥托(Valentinus Otho)得到,1625年发表于荷兰工程师安托尼斯(Metius)的著作中,欧洲称之为Metius' number。
约在公元530年,印度数学大师阿耶波多算出圆周率约为√9.8684。婆罗摩笈多采用另一套方法,推论出圆周率等于10的算术平方根。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
分析法时期
这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。
第一个快速算法由英国数学家梅钦(John Machin)提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:[9]

其中arctan x可由泰勒级数算出。类似方法称为“梅钦类公式”。
斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了梅钦于1706年提出的数式。
到1948年英国的弗格森(D. F. Ferguson)和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
计算机时代
电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世上首部电脑-ENIAC(Electronic

圆周率
Numerical Integrator And Computer)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收敛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。这算法被称为布伦特-萨拉明(或萨拉明-布伦特)演算法,亦称高斯-勒让德演算法。
1989年美国哥伦比亚大学研究人员用克雷-2型(Cray-2)和IBM-3090/VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数。2010年1月7日——法国工程师法布里斯·贝拉将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。
日期

计算者

证明

前20世纪

巴比伦人

π= 3.125

前20世纪

印度人

π= 3.160493...

前12世纪

中国

π=3

前6世纪中

圣经列王记上7章23节

π=3

前3世纪

阿基米德

π=3.1418

公元前20年

维特鲁威

π= 3.125

公元前50年-公元前23年

刘歆

π=3.1547

130年

张衡

π=3.162277...

150年

托勒密

π=3.141666...

250年

王蕃

π=3.155555...

263年

刘徽

π=3.14159

480年

祖冲之

3.1415926 <π< 3.1415927

499年

阿耶波多

π= 3.1416

598年

婆罗摩笈多

π=3.162277...

800年

花拉子米

π=3.1416

12世纪

婆什迦罗第二

π=3.14156

1220年

斐波那契

π=3.141818

1400年

Madhava

π=3.14159265359

1424年

Jamshid Masud Al Kashi

π=16位小数

1573年

Valentinus Otho

π=6位小数

1593年

弗朗索瓦·韦达

π=9位小数

1593年

Adriaan van Roomen

π=15位小数

1596年

鲁道夫·范·科伊伦

π=20位小数

1615年

π=32位小数

1621年

威理博·司乃耳, 范·科伊伦的学生

π=35位小数

1665年

牛顿

π=16位小数

1699年

Abraham Sharp

π=71位小数

1700年

关孝和

π=10位小数

1706年

John Machin

π=100位小数

1706年

William Jones

引入希腊字母π

1719年

De Lagny

π=127位小数
(只有112位正确)

1723年

建部贤弘

π=41位小数

1730年

Kamata

π=25位小数

1734年

莱昂哈德·欧拉

引入希腊字母π并肯定其普及性

1739年

松永良弼

π=50位小数

1761年

约翰·海因里希·兰伯特

证明π是无理数

1775年

欧拉

指出π可能是超越数

1794年

Jurij Vega

π=140位小数
(只有136位正确)

1794年

阿德里安-马里·勒让德

-

1841年

Rutherford

π=208位小数
(只有152位正确)

1844年

Zacharias Dase及Strassnitzky

π=200位小数

1847年

Thomas Clausen

π=248位小数

1853年

Lehmann

π=261位小数

1853年

William Rutherford

π=440位小数

1855年

Richter

π=500位小数

1874年

William Shanks

π=707位小数
(只有527位正确)

1882年

Lindemann

证明π是超越数

1946年

D. F. Ferguson

π=620位小数

1947年

π=710位小数

1947年

π=808位小数

1949年

J. W. Wrench爵士和L. R. Smith

π=2,037位小数
首次使用计算机

1955年

J. W. Wrench爵士及L. R. Smith

π=3,089位小数

1957年

G.E.Felton

π=7,480位小数

1958年

Francois Genuys

π=10,000位小数

1958年

G.E.Felton

π=10,020位小数

1959年

Francois Genuys

π=16,167位小数

1961年

IBM 7090晶体管计算机

π=20,000位小数

1961年

J. W. Wrench, Jr,及L. R. Smith

π=100,000位小数

1966年

π=250,000位小数

1967年

π=500,000位小数

1974年

π=1,000,000位小数

1981年

金田康正

π=2,000,000位小数

1982年

π=4,000,000位小数

1983年

π=8,000,000位小数

1983年

π=16,000,000位小数

1985年

Bill Gosper

π=17,000,000位小数

1986年

David H. Bailey

π=29,000,000位小数

1986年

金田康正

π=33,000,000位小数

1986年

π=67,000,000位小数

1987年

π=134,000,000位小数

1988年

π=201,000,000位小数

1989年

楚诺维斯基兄弟

π=480,000,000位小数

1989年

π=535,000,000位小数

1989年

金田康正

π=536,000,000位小数

1989年

楚诺维斯基兄弟

π=1,011,000,000位小数

1989年

金田康正

π=1,073,000,000位小数

1992年

π=2,180,000,000位小数

1994年

楚诺维斯基兄弟

π=4,044,000,000位小数

1995年

金田康正和高桥大介

π=4,294,960,000位小数

1995年

π=6,000,000,000位小数

1996年

楚诺维斯基兄弟

π=8,000,000,000位小数

1997年

金田康正和高桥大介

π=51,500,000,000位小数

1999年

π=68,700,000,000位小数

1999年

π=206,000,000,000位小数

2002年

金田康正的队伍

π=1,241,100,000,000位小数

2009年

高桥大介

π=2,576,980,370,000位小数

2009年

法布里斯·贝拉

π=2,699,999,990,000位小数

2010年

近藤茂

π=5,000,000,000,000位小数

[10]
2011年,IBM "蓝色基因/P"超级电脑算出π2的60,000,000,000,000位二进制小数。[11]
3特性和相关公式
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积[1]。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
π在许多数学领域都有非常重要的作用。
几何

面积:

周长:



圆环
面积:

周长:



圆柱
底面积(只计一面):

底面周长(只计一面):



侧面积:



表面积:

体积:

(底面积×高)、

圆锥
底面积:

底面周长:



体积:



扇形
弧长公式:





以弧度给出)
面积公式:



代数
π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
数学分析
Leibniz定理:

wallis公式:

高斯积分:

斯特林公式:

欧拉公式:

π的连分数表示:

数论
两个任意自然数是互质的概率是


任取一个任意整数,该整数没有重复质因子的概率为


一个任意整数平均可用

个方法写成两个完全数之和。
概率论
设我们有一个以平行且等距木纹铺成的地板,随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率。这就是布丰投针问题。1777 年,布丰自己解决了这个问题——这个概率值是 1/π。
统计学
正态分布的概率密度函数:

物理学
海森堡不确定性原理:

相对论的场方程:

4趣闻事件
历史上最马拉松式的人手π值计算,其一是德国的鲁道夫·范·科伊伦(Ludolph van Ceulen),他几乎耗尽了一生的时间,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolphine number;其二是英国的威廉·山克斯(William Shanks),他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。[14]
在谷歌公司2005年的一次公开募股中,共集资四十多亿美元,A股发行数量是14,159,265股,这当然是由π小数点后的位数得来。[15](顺便一提,谷歌公司2004年的首次公开募股,集资额为$2,718,281,828,与数学常数e有关[16])
排版软件TeX从第三版之后的版本号为逐次增加一位小数,使之越来越接近π的值:3.1,3.14,……当前的最新版本号是3.1415926。[17-18]
每年3月14日为圆周率日,“终极圆周率日”则是1592年3月14日6时54分,(因为其英式记法为“3/14/15926.54”,恰好是圆周率的十位近似值。)和3141年5月9日2时6分5秒(从前往后,3.14159265)
7月22日为圆周率近似日(英国式日期记作22/7,看成圆周率的近似分数)
有数学家认为应把真正的圆周率定义为2π,并将“真正的圆周率”记为τ(发音:tau)。数学界对圆周率到底是π还是τ仍存在争论。[19]
词条图册更多图册◆

词条图片(55张)
1/1

数学名词

A-F

▪ 八边形 ▪ 八面体 ▪ 百分比 ▪ 百分点
▪ 百分位数 ▪ 半径 ▪ 半球 ▪ 半圆
▪ 被乘数 ▪ 被除数 ▪ 被加数 ▪ 被减数
▪ 比 ▪ 比例 ▪ 边 ▪ 变量
▪ 标准差 ▪ 表面积 ▪ 并集 ▪ 补集
▪ 不等边三角形 ▪ 不等式 ▪ 不定积分 ▪ 差
▪ 长 ▪ 常量 ▪ 乘 ▪ 乘方
▪ 乘数 ▪ 除 ▪ 除数 ▪ 垂心
▪ 次方 ▪ 次方根 ▪ 大于 ▪ 大于等于
▪ 代数 ▪ 单调性 ▪ 单项式 ▪ 导数
▪ 等边三角形 ▪ 等式方程式 ▪ 等腰三角形 ▪ 等腰梯形
▪ 等于 ▪ 底 ▪ 底面 ▪ 点
▪ 定积分 ▪ 定理 ▪ 定义域 ▪ 对数
▪ 钝角 ▪ 钝角三角形 ▪ 多边形 ▪ 多面体
▪ 二次方程 ▪ 多项式 ▪ 二次方根平方根 ▪ 二次方平方
▪ 二进制 ▪ 二十面体 ▪ 反余割 ▪ 反余切
▪ 反余弦 ▪ 反正割 ▪ 反正切 ▪ 反正弦
▪ 方差 ▪ 非正态分布 ▪ 分布 ▪ 分母
▪ 分数 ▪ 分子 ▪ 负 ▪ 复数

以上名词按中文名拼音首字母顺序排列

G-L

M-R

S-Z

参考资料

1. Jörg Arndt, Christoph Haenel .Pi - Unleashed :Springer ,2001 :17 .
2. Jörg Arndt, Christoph Haenel .Pi - Unleashed :Springer ,2011 :165 .
3. Jörg Arndt, Christoph Haenel .Pi - Unleashed :Springer ,2001 :166 .
4. Jörg Arndt, Christoph Haenel .Pi - Unleashed :Springer ,2001 :167 .
5. Mathematics in the service of religion: I. Vedas and Vedangas .The MacTutor History of Mathematics archive [引用日期2013-12-2] .
6. 李培业.商高定理古证冥求[J].高等数学研究,2006(1):58-62
7. 吴文俊主编 .《中国数学史大系》(第三卷) :北京师范大学出版社 ,2000 :5 .
8. "To find a slightly more accurate approximation we have to go to 52163 / 16604." .OEIS [引用日期2013-12-2] .
9. Why Pi Fact Sheet .Pi Across America [引用日期2013-03-13] .
10. A chronology of pi .The MacTutor History of Mathematics archive [引用日期2013-12-3] .
11. Supercomputers Crack Sixty-Trillionth Binary Digit of Pi-Squared .U.S. Department of Energy [引用日期2013-12-2] .
12. A001203 Continued fraction expansion of Pi. .OEIS [引用日期2013-12-2] .
13. Continued fraction representations .functions.wolfram.com [引用日期2013-12-2] .本回答被提问者采纳