如何设计开关电源?

如题所述

第1个回答  2012-06-04
概述:首先分析了现代开关电源的优缺点及其发展状况,在传统开关电源的基础上设计了一种新型的带全面检测和保护功能的开关电源,该电源输入带雷电浪涌保护,并配有RS-485通讯接口,可实现与上位通讯。 1、概述 随着电子技术和电源技术的发展,开关电源以体积小、重量轻、功率密度大、集成度高、输出组合便利等优点而成为电子电路电源的首选。在实际的工作环境中,特别是在一些工业场所中,电磁环境十分恶劣,常常有异常情况出现,例如过电压、瞬态脉冲冲击波、强电磁辐射等。这些都有可能击毁电源。影响整个系统的工作。通过设计以微处理机为核心的具有全面电源检测技术辅以提高开关电源抗过电压、抗干扰性能力的手段,设计了一种具有保护和监控功能的开关电源。 2、设计思想 随着电子设备对电源系统要求的日益提高,研究廉价的具有监视"管理供电电源功能的开关电源愈来愈显得必要。通过综合考虑电源各种技术性能和对自身的安全要求以及开关电源性能的基础上,设计出了一种新型实用的带有过电压检测和保护装置的智能化源。它具有以下几个特点:(1)实现了对过电压的检测,并能记录每次过电压的瞬时值和峰值。可启动备用电源供电。实现对电子电路的保护作用。(2)具有抗冲击能力强、使用寿命长、带液晶屏数字监视的特点。 同时通过RS-485通信接口与管理计算机通讯能实现电源的工作和保护等功能的透明化。(3)能实时显示输出电压、电流的大小、过电压的次数、大小以及必要的参数设置信息。(4)通过接口与后台或远端PC机实现数据传送。智能化电源的核心由显示板、CPU板、通信板、备用电源板、过电压检测板、键盘、通信转接板组成。装置的关键是实现电压的峰值检测,尤其是过电压的检测。该开关电源使用了一种基于单片机的过电压检测和峰值电压检测方法,实验证明它满足了对检测的快速性和精确性的要求。 3、系统硬件设计 3.1 原理框图 系统硬件框架如图1所示。在正常的情况下220V的交流输入电压经过整流、滤波、DC/DC.变换、限流稳压电路后可得到一个稳定的输出电压。是一个普通开关电源。当有过电压时,过电压信号经过过电压检测电路检测和峰值电压保持电路保持,控制电源回路,断开正常工作的交流电路,同时通过计算机启动备用电源工作,以及完成对过电压的瞬时值和峰值的测量。 3.2 PWM控制电路 系统采用的PWM调制器为SG3524型号[4]的芯片,电路如图2所示。在芯片的电源信号入口端并联一电容C2构成一个软启动电路。设计软启动电路的目的是防止在电源突然开通时产生的过大电流对芯片造成冲击。在刚通电时,电容两端电压不能突变,它的电压随外部电源对其充电而逐渐升高,经过一段时间后,电路进入正常工作状态。这样保证了输入电压缓慢地建立起来,确保芯片不受损坏。输出电路的开关功率管选用MOS功率管。由于功率管是在高频状态下工作会产生振荡。为了消除这种寄生振荡,应尽量减少与功率管各管脚的连线长度,特别是栅极引线的长度。若无法减少其长度,可以串联小电阻,且尽量靠近管子栅极。图中R3既是功率管的栅极限流电阻,又与R4一起消除功率管工作时产生的寄生振荡。 3.3 变压器驱动电路 变压器驱动电路见图3。驱动电路采用单端驱动工作方式,这种电路简单、工作可靠性高。功率管由来自SG3524芯片的信号驱动。11、14脚的单端并联输出。当SG3524输出高电平时,功率管导通,在电感L中储能;输出低电平时,功率管截止,导致流过电感L上的电流突然下降为零,L产生反电势。该反电势的脉冲电压加在高频变压器的输入端,驱动变压器工作。同时,电感L作变压器的阻抗匹配元件。   由高频变压器输出的交流电压经二极管VD2、VD3进行整流倍压后,再经C2滤波,得到高压输出。 3.4 采样反馈电路 反馈回路中,对输出电压信号的取样,采用在输出端并联电阻,再将高压经电阻串联衰减的方法实现。   R3、R4、RW为电压取样反馈电阻。电压经隔离反馈后,从SG3524芯片的1脚输入,控制占空比,进而调节输出电压,达到稳压的目的。其稳压原理是:若输出电压偏高,采样反馈的信号也偏高,与SG3524中误差放大器的基准电压比较后的电压偏低,导致占空比的宽度变窄,引起输出电压下降;反之亦然。RW是可调电阻,通过调节RW来调节输出电压。 3.5 过电压检测电路 过电压对于电源来说是一个非常有害的信号。雷电等引起的瞬时高电压如果不加遏制,直接由电源引入RTU(远程终端设备)则会影响其电源模块的正常工作,各功能模块的工作电压升高而工作不正常,严重时会损坏模块,烧坏元器件IC。 过电压保护的基本原理是在瞬态过电压发生的时侯(微秒或纳秒级),通过过电压检测电路对这个信号进行检测。过电压检测电路中主要的元件是压敏电阻,压敏电阻相当于很多串并联在一起的双向抑制二极管。电压超过箝位电压时,压敏电阻导通;电压低于箝位电压时,压敏电阻截止。这就是压敏电阻的电压箝位作用。压敏电阻工作极为迅速,响应时间在纳秒级。 过电压检测电路原理图如图(4)所示,当有过电压信号产生时,压敏电阻被击穿,呈现低阻值甚至接近短路状态,这样在电流互感器的原级产生一个大电流,通过线圈互感作用在副级产生一个小电流,再通过精密电阻把电流信号转变为电压信号。这个信号输入到电压比较器LM393后,电压比较器LM393输出高电平,经过非门A 输出的控制脉冲1控制电源回路,断开开关电源电路,启动备用电源。控制脉冲2送到单片机的中断口,单片机控制回路启动A/D转换,采样过电压的瞬时值。 3.6 峰值电压采样保持电路 峰值电压采样保持电路如图(5) 所示。峰值电压采样保持电路由一片采样保持器芯片LF398 和一块电压比较器LM311构成。LF398的输出电压和输入电压通过LM311进行比较,当Vi>Vo时LM311输出高电平,送到LF398的逻辑控制端8 脚,使LF398 处于采样状态。.
以上这些是一些新型开关电源设计一部分,不知道能帮助你吗?追问

有帮助,谢谢你!

第2个回答  2012-06-03
先是收集整理资料吧
相似回答