特征向量的第二性质

如题所述

第1个回答  2016-05-12

A的一个特征值λ的代数重次是λ作为A的特征多项式的零点的次数;换句话说,若λ是一个该多项式的根,它是因子(t − λ)在特征多项式中在因式分解后中出现的次数。一个n×n矩阵有n个特征值,如果将代数重次计算在内的话,因为其特征多项式次数为n。
一个代数重次1的特征值为“单特征值”。
在关于矩阵理论的条目中,可能会遇到如下的命题:
一个矩阵A的特征值为4,4,3,3,3,2,2,1,
表示4的代数重次为二,3的是三,2的是二,而1的是1。这样的风格因为代数重次对于矩阵理论中的很多数学证明很重要而被大量使用。
回想一下,我们定义特征向量的几何重次为相应特征空间的维数,也就是λI − A的零空间。代数重次也可以视为一种维数:它是相应广义特征空间 (第一种意义)的维数,也就是矩阵(λI − A)^k对于任何足够大的k的零空间。也就是说,它是“广义特征向量”(第一种意义)的空间,其中一个广义特征向量是任何一个如果 λI − A作用连续作用足够多次就“最终”会变0的向量。任何特征向量是一个广义特征向量,以此任一特征空间被包含于相应的广义特征空间。这给了一个几何重次总是小于代数重次的简单证明。这里的第一种意义不可和下面所说的广义特征值问题混淆。 它只有一个特征值,也就是λ = 1。其特征多项式是(λ − 1)2,所以这个特征值代数重次为2。但是,相应特征空间是通常称为x轴的数轴,由向量线性撑成,所以几何重次只是1。
广义特征向量可以用于计算一个矩阵的若当标准型(参看下面的讨论)。若当块通常不是对角化而是幂零的这个事实与特征向量和广义特征向量之间的区别直接相关。

相似回答