无功补偿原理的斯威尔

如题所述

第1个回答  2016-05-12

应用不需要设置专用的无功补偿箱或者无功补偿柜,实现对各种场合的小容量就地补偿。
■在用电设备旁放置智能电容器
■在壁挂式配电箱内放置智能电容器
■在工程车间配电设备内(旁)放置智能电容器
■在用户配变小于100kvar的计量柜、配电柜内放置智能电容器
优点:无功补偿距离短,节能降损效果显著,设备接线简单、维护方便。
配置参考:对于小容量负载,按照负载总功率的25%~40%配置智能电容器容量。
例:一台电动机就地补偿方案
电动机额定功率:50kW
无功补偿容量: 15kvar(10kvar+5kvar)
智能电容器数量:1台 SWL-8MZS/450-10.5
无功补偿级数: 0、5、10、15kvar
低压分组补偿的应用
对户外配电变进行就地无功补偿,直接将设备安装于柱挂式户外设备箱内。
优点:体积小、接线简、维护方便;投资小、节能降损效果显著。
配置参考:配变无功补偿容量一般为配变容量的25%~40%。
例:户外配电变压器应用方案
配变容量:200kVA
无功补偿容量:60kvar 2×30kvar(20kvar+10kvar)
智能电容器数量:2台 SWL-8MZS/450-20.10
无功补偿级数:0、10、20、30、40、50、60
安装在箱变低压室,根据配电变压器容量进行补偿,选用若干台智能电容器联机使用。
优点:接线简单、维护方便、成本低、节约空间的显著特点。
配置参考:箱变无功补偿容量一般为配变容量的25%~40%。
例:箱式变集中补偿应用方案
箱变容量:500kVA
无功补偿容量:190kvar 4×40kvar(20kvar+20kvar)+ 1×30kvar(20kvar+10kvar)
智能电容器数量:4台 SWL-8MZS/450-20.20 1台 SWL-8MZS/450-20.10
高压集中补偿的应用
低压无功补偿智能电容器实现在柜体内组装,构成无功自动补偿装置,接线简单、维护方便、节约成本。
优点:补偿效果好,容量可调整性好,接线简单、故障少、运行维护方便。
配置参考:根据成套柜补偿容量的要求进行配置。
低压成套柜配置容量参考:
GGD柜型
柜体尺寸:1000mm(宽) ×600mm(深) ×2230(高)mm
可安装智能电容器数量:20台 40kvar(20kvar+20kvar)
无功补偿总容量:800kvar(40kvar×20)
MNS柜型
柜体尺寸:600mm(宽) ×800mm(深) ×2200(高)mm
可安装智能电容器数量:12台 40kvar(20kvar+20kvar)
无功补偿总容量:480kvar(40kvar×12)
⑵大容量电力电子装置,普通电容器就地补偿不恰当:随着大型电力电子装置的广泛应用,尤其是采用大容量晶闸管电源供电后,致使电网波形畸变,谐波分量增大,功率因数降低。更由于此类负载经常是快速变化,谐波次数增高,危及供电质量,对通讯设备影响也很大,所以此类负载采用就地补偿是不安全,不恰当的。因为①电力电子装置会产生高次谐波,在负载电感上有部分被抑制。但当负载并联电容器后,高次谐波可顺利通过电容器,这就等效地增加了供电网络中的谐波成分。②由于谐波电流的存在,会增加电容器的负担,容易造成电容器的过流、过热,甚至损坏。③电力电子装置供电的负载如电弧炉、轧钢机等具有冲击性无功负载,这要求无功补偿的响应速度要快,但并联电容器的补偿方法是难以奏效。
⑶电动机起动频繁或经常正反转的场合,不宜采用普通电容器就地补偿:异步电动机直接起动时,起动电流约为额定电流的4-7倍,即使采用降压起动措施,其起动电流也是额定电流的2-3倍。因此在电动机起动瞬间,与电动机并联的电容器势必流过浪涌冲击电流,这对频繁起动的场合,不仅增加线损,而且引起电容器过热,降低使用寿命。 此外,对具有正反转起动的场合,应把补偿电容器接到接触器头电源进线侧,这虽能使电容随电动机的运行而投入。但当接触器刚断开时,电容器会向电动机绕组放电,,引起电动机自激产生高电压,这也有不妥之处。若将补偿电容器接于电源侧,当电动机停运时,电网仍向电容器供给电流,造成电容器负担加重,产生不必要的损耗。为此,对无功补偿功率较大的电容器,如需接在电源进线侧,则应对电容器另外加控制开关,在电动机停运时予以切除。
⑷就地补偿的电容器不宜采用普通电力电容器:推广就地补偿技术时,不宜直接使用普通油浸纸质电力电容器,因为其自愈功能很差,使用中可能产生永久性击穿,甚至引起爆炸,危及人身安全。
应用选型需要考虑的因素
1、谐波含量及分布
配电系统可能产生的电流谐波次数与幅值及电压谐波总畸变率,根据谐波含量确认补偿方案。
2、负荷类型
配电系统现行负荷和非线性负荷占总负荷比例,根据比例确定补偿方案。
3、无功需求
配电系统中如果感性负荷比例大则无功需求大,补偿容量应增大。
4、符合变化情况
配电系统中若静态符合多,则采用静态补偿,若频繁变化负荷多则采用动态跟踪补偿较合适。
5、三相平衡性
配电系统中若三相负荷平衡则采用三相共补,若三相负荷不平衡则采用分相补偿或混合补偿。
无功补偿设计方案参考
基于斯威尔电气提供的智能无功补偿控制器设计的无功补偿方案,可参考下述原则。 非线性负荷比率   无功补偿 设计方案      三相平衡静态负荷 三相不平衡静态负荷 三相平衡频繁变化负荷  三相不平衡频繁变化负荷负荷中非线性设备≤15%变压器容量(主要为线性负荷) 三相共补,复合开关过零投切,
智能电容器:SWL-8MZS 分相补偿或混合补偿,
复合开关过零投切;
电容器:SWL-8MZF
或SWL-8ZMS 三相共补,可控硅开关动态切换
电容器:SWL-DMZS 分相补偿或混合补偿,
可控硅开关动态切换;
电容器:SWL-DMZF
或SWL-DZMS 15%<负荷中非线性设备比率≤50%变压器容量(存在一定量的谐波) 三相共补
复合开关过零投切
电容回路中串联6%或12%;滤波电抗
电容器:SWL-LBMZS 分相补偿或混合补偿
复合开关过零投切
电容回路中串联6%或12%非调谐滤波电抗
电容器:SWL-LBMZF或SWL-LBMZS 三相共补
可控硅开关动态切换
电容回路中串联6%或12%非调谐滤波电抗
电容器:SWL-LBDMZS 分相补偿或混合补偿
可控硅开关动态切换
电容回路中串联6%或12%非调谐滤波电抗
电容器:SWL-LBDMZF或SWL-LBDMZS 谐波治理目标 破坏电容与系统的并联谐振,部分吸收系统中的3、5、7次以上谐波 同左  负荷中非线性设备比率>50%变压器容量(存在大量谐波) 三相共补
复合开关过零投切
由电容或电抗组成的调谐滤波回路
电容器:SWL-LBMZS 分相补偿或混合补偿
复合开关过零投切
由电容或电抗组成的调谐滤波回路
电容器:SWL-LBMZF或SWL-LBMZS 三相共补
可控硅开关动态切换
由电容或电抗组成的调谐滤波回路
电容器:SWL-LBDMZS 分相补偿或混合补偿
可控硅开关动态切换
由电容或电抗组成的调谐滤波回路
电容器:SWL-LBDMZF或SWL-LBDMZS 谐波治理目标 完全吸收3、5、7次及以上电流谐波 完全吸收3、5、7次及以上电流谐波 完全吸收3、5、7次及以上电流谐波 完全吸收3、5、7次及以上电流谐波

相似回答