数模转换的通用模数/数模转换结构

如题所述

第1个回答  2016-05-18

软件无线电中通常采用的ADC和DAC的结构包括以下4种类型:
(1)并行结构,包括Flash-ADC和串状DAC;
(2)分段结构,包括折叠内插ADC和“分段”梯形DAC;
(3)迭代结构,包括分区ADC、流水线型ADC、逐次逼近型ADC;
(4)Σ-△结构,包括Σ-△ADC和DAC。
下面以ADC为例对以上几种结构进行介绍。
1.并行结构
并行结构的数据转换器的基本思想是:同时比较待转换的信号电平与所有级别的量化电平之间的关系,在模拟信号和数字信号之间相互转换。并行结构所对应的A/D和D/A转换器件分别为Flash-ADC和串状DAC。
Flash-ADC内含一列并联比较器,一列由电阻分压器产生的电平作为相应的比较器的基准电压。被转换的模拟电压信号同时加到全部比较器上,各比较器的输出经编码后作为ADC的输出,如图2.12所示。
一个分辨率为N(bit)的Flash-ADC含有2N个精密电阻,2N−1个高速比较器;分辨率每增加1bit,需要增加2N个精密电阻和2N个高速比较器,这会大大增加集成的复杂度和器件功耗。因此一般Flash-ADC的分辨率无法达到很高。
串状DAC是实现Flash-ADC的逆操作,因使用电阻串来构造参考电压而得名,在有的书中也被称为开尔文分配器。串状DAC依靠待转换数据来控制一组开关,以产生合适的电流通过精密电阻,从而产生合适的模拟信号电压。
并行结构只需要一级模拟电路,因此具有设计简单,转换时间短,速度快的优点,在所有可能的结构中提供最快的数据转换。在分辨率要求较低的情况下,Flash-ADC和串状DAC两种结构都容易采用超大规模集成电路(VLSI)进行设计。然而,由于比较器(或开关)和精密电阻的数量随着转换器的分辨率呈指数增长,Flash-ADC和串状DAC的芯片面积和功耗也随之呈指数增长。
2.分段结构
分段结构的数据转换器的思想是把输入信号分成MSB和LSB两个分量,之后两个分量通过各自所对应的数据转换器进行处理,最后将处理的结果组合起来形成输出信号。其中MSB分量反映了输入信号相对较大的幅度增量,而LSB反映了在MSB上所叠加的较小的幅度变化。对于数字信号而言,MSB代表了高位比特,而LSB代表了低位比特。
而软件无线电所生成的数字信号也需要变换成模拟信号才能进行射频放大输出。这一切都是通过A/D转换器(ADC)和D/A转换器(DAC)来实现的。
与传统无线电不同,软件无线电要求尽可能地以数字形式处理无线信号,因此必须将A/D和D/A转换器尽可能地向天线端推移,这就对A/D和D/A转换器的性能提出了更高的要求。主要体现在两个方面。
(1)采样速率。依据采样定理,A/D转换器的抽样频率应大于(为被采样信号的带宽)。在实际中,由于A/D转换器件的非线性、量化噪声、失真及接收机噪声等因素的影响,一般选取。
(2)分辨率。采样值的位数的选取需要满足一定的动态范围及数字部分处理精度的要求,一般分辨率80dB的动态范围要求下不能低于12位。
本节首先介绍模数/数模变换的原理及关键技术,接着给出模数/数模转换器的一些关键参数,最后讨论几种通用的模数/数模转换器的结构。

相似回答