混沌的保守系统的混沌

如题所述

第1个回答  2016-05-09

力学系统可按照其能量是否守恒区分为保守系统和耗散系统;又可按照系统可否用已知数学方式表达其运动形式区分为可积系统与不可积系统两类。在一切可能的力学系统中,不可积系统无处不在,可积系统十分罕见。传统的力学教科书只讲授可积系统 ,没有描述出牛顿力学的真面目。不可积的力学系统的典型运动图像究竟如何,成为一个数学难题。19世纪末H.庞加莱在讨论太阳系稳定性时,首次发现三体问题不可积和三体运动轨道的复杂性。直到20世纪60年代初三位数学家A.科尔莫戈罗夫、V.阿诺尔德和J.莫塞证明了KAM定理后,才从一定意义上正面回答了部分问题。   KAM定理说的是,如果一个系统偏离可积系统足够小,总体运动图像和可积系统差不多。但KAM定理没有回答大偏离下系统的运动如何。这时系统仍然遵从确定论的牛顿力学方程,亦即只要系统精确地从某一初始点出发,其运动的轨道是完全确定的。但如果初始条件发生不论多么微小的变化,系统某些运动轨道会出现无法预料的改变。这种发生在确定性系统中的运动轨道对初始值极为敏感的貌似无序和混乱的运动,即混沌运动。一个典型的不可积的力学系统通常兼有规则运动和随机运动的两种不同区域。随着偏离可积性,随机区域逐渐扩大,终至取代规则区域。因此,从可预测性的观点看,决定性的牛顿力学实际上具有内秉的随机性。
KAM定理说明接近可积哈密顿系统的运动所具有的性质。由此开始的对哈密顿系统的研究发现,当KAM定理不适用时,系统中也出现混沌运动。在70年代,动力学系统的内在随机性理论或混沌理论以及与之相关的奇怪吸引子的数学理论都迅速发展起来。有人认为,这种理论可能是最终阐明流体力学中湍流机理的一种途径,但也有人认为现今混沌理论处理的是较简单的数学模型,对于象纳维-斯托克斯方程那样的偏微分方程还无能为力,因此,对于解决湍流机理为时尚早。在物理学和其他科学领域中,也有混沌运动的各种例子。混沌现象的发现使人们对于经典力学和统计力学之间、确定论和随机论之间的沟通,在思想上是有启发的。

相似回答