电源线的EMI/RFI是由瞬变电压引起的,因此,这类干扰的抑制对策主要是提高电路或系统对瞬变电压的适应能力。分析和实践证明下述措施对提高电源抗干扰能力是有效的:
在电源引入端加混合电源瞬变保护网络。
如图6所示,气体放电管和大功率齐纳二极管提供差模与共模保护,在要求不高时,可用金属氧化物压敏电阻代替齐纳二极管。扼流圈用来吸收浪涌电流。
利用变压器进行隔离。变压器对大于300ns的瞬变有很好的保护作用。但在具体应用中应注意,变压器的连接方式不同,所构成的保护模式也不同。一般由四种方式:1)采用无屏蔽的标准变压器,且次级与安全地相连以消除中性点与地之间的压差;2)采用单层法拉第屏蔽的变压器,屏蔽与安全地连接以实现共模保护;3)采用单层法拉第屏蔽的变压器,初级与中性线相连以实现差模保护;4)采用三层法拉第屏蔽的变压器,可实现差模、共模保护,并能消除中性点与安全地之间的压差。
在电源的整流和稳压输出端除加有大电容低频滤波外,应并接低容量无感高频滤波电容器。其容量:C=ΔIΔl/Δu式中ΔI——电源电流波动的峰值;Δl——电流脉动宽度;Δu——电源电压波动允许值。
在每个电路模块上电源线走线在接法上使其终端形成闭环,否则,在电源线终端相当于开路时,高频干扰就会形成全反射,而使干扰信号成倍增加。
尽量使电源线和地线平行走线,使电源线对地呈低阻抗以减小电源噪声干扰。最好使用双绞线馈电。
PCB设计中的EMI/RFI保护印刷电路板上信号线的布设如何,将直接关系到系统对电磁干扰和电磁能辐射的灵敏度,一个不好的PCB设计很可能导致系统的EMC失败。高频噪声在PCB上可能耦合、辐射的途径有:电源线辐射、电源阻抗耦合、公共地阻抗耦合、I/O线的串扰与辐射。