正项数列{an},前n项和为sn,{an}满足a1=1,2sn=an(an+1) ⑴求an通项

正项数列{an},前n项和为sn,{an}满足a1=1,2sn=an(an+1)
⑴求an通项⑵设{1/(an+2)²}前n项和为An,求证对任意正整数都有An<1/2成立

(1)

n≥2时,

2an=2Sn-2S(n-1)=an(an+1)-a(n-1)[a(n-1)+1]

an²-a(n-1)²-an-a(n-1)=0

[an+a(n-1)][an-a(n-1)]-[an+a(n-1)]=0

[an+a(n-1)][an-a(n-1)-1]=0

数列为正项数列,an+a(n-1)恒>0,因此只有an-a(n-1)-1=0

an-a(n-1)=1,为定值

a1=1,数列{an}是以1为首项,1为公差的等差数列

an=1+1×(n-1)=n

数列{an}的通项公式为an=n

(2)

1/(an+2)²=1/(n+2)²<1/[(n+1)(n+2)]

An=1/(a1+2)²+ 1/(a2+2)²+...+1/(an+2)²

<1/[(1+1)(1+2)]+ 1/[(2+1)(2+2)]+...+ 1/[(n+1)(n+2)]

=1/(2×3)+ 1/(3×4)+...+1/[(n+1)(n+2)]

=1/2 -1/3 +1/3 -1/4 +...+1/(n+1) -1/(n+2)

=1/2 -1/(n+2)

1/(n+2)>0,1/2 -1/(n+2)<1/2对于任意正整数n恒成立

综上,得:对于任意正整数n,An<1/2恒成立。

温馨提示:答案为网友推荐,仅供参考