这个电路是如何产生脉冲信号的?

有点类似百科里面说的焦耳小偷电路,但是我不太认同百科里面的说法,百科里面的意思是,当三极管导通后,接入三极管集电极的线圈会产生电动势,接入三极管基极的线圈会感应到该电动势,该电动势会阻止基极导通。我的意思是这样的,当三极管导通后相当于短路,大家都知道,电流跟水流一样比较喜欢往通畅的线路走,由于基极串联了一个电阻,在短路的时候基极是不可能分配到电流的,所以基极关闭,导致三极管截止,当三极管截止后,那么基极又可以分配到电流了,然后三极管又导通了,就这样反反复复循环。还有个问题,按照我这种说法,那么基极无需串联一个电感,图里面串联的电感是为了提升效率,无论电流往基极流动还是往发射极流动,都能够产生磁场,让次级线圈像交流电一样既有正波又有负波

唉,你的电磁学基础、电子技术基础很薄弱啊,连正反馈、自激振荡、三极管饱和状态与截止状态的转换、磁芯变压器工作原理(如多个绕组的同名端判断)、……这一系列知识,都一知半解甚至完全不懂啊,你的分析完全错误。

如左图:忽略变压器绕组的内电阻。电路接通后,三极管通过变压器初级线圈的MN部分、基极电阻Rb获得基极电流Ib,Ib=(U-0.7V)/Rb,经放大后集电极流过Ic=βIb的电流,这个集电极电流必然流过变压器初级线圈的NP部分。其中,U为电源电压,0.7V为三极管be结正向压降。

高中物理课学过的变压器知识告诉我们:这个变压器的线圈MNP部分就是一个变压器,其原线圈为NP、副线圈为MN。再由高中物理电磁感应部分的“楞次定律”可知,M端和P端为同名端,即这个变压器工作时,M和N两端相对于P端的电位同时为正或同时为负。也就是说M和N两端的电位同时比P端高且M端比N端更高,或同时比P端低且M端比N端更低。

当电路接通后,集电极电流(流过线圈NP部分的电流)从无到有、逐渐增大时,N端电位高于P端电位,变压器铁芯中的磁通量不断增加,电磁感应的结果必然使得M端电位同样高于P端电位、同时也高于N端电位(请自行用楞次定律验证),即Umn>0。Umn叠加了电源电压,使得基极电流增大为 (U+Umn-0.7V)/Rb,基极电流的增大,使得三极管迅速饱和导通,饱和后三极管ce两极间电压减小为0.3V左右,近乎短路。图中绿色箭头表明Umn叠加电源电压后基极电流Ib流经的路径。

三极管饱和后,Upn为定值U-0.3V,流过线圈NP的电流(即集电极电流Ic)线性增长(即△Ic/△t为常数),其随时间t变化的函数为Ic=(U-0.3V)t/L,L为线圈NP部分的电感(自感系数)。当Ic增长到βIb之前,Umn>0一直成立,且Umn为定值(由MN和NP两组线圈匝数比决定)。当Ic一旦达到βIb(又或者变压器磁芯磁通饱和)时,三极管开始退出饱和状态,Ic无法继续线性增长,其变化量△Ic/△t无法保持常数而开始减小,Upn开始减小,Upn的减小,导致Umn减小。Umn的减小使得Ib进一步减小,Ib的进一步减小必然导致Ic停止增大转而开始减小,Ic减小将导致变压器各组线圈感应电动势反向,即Umn<0。通过合理的设计匝数比,令Umn高于电源电压,Umn<0的结果必然使得三极管基极反偏、Ib=0,三极管迅速截止、Ic=0。

三极管截止期间,储存在变压器磁芯中的磁通量不可能立即衰减为零(如同运动的物体有惯性不可能瞬间停止运动),各组线圈必然产生自感现象,线圈PN产生的自感电动势叠加电源电压后加在三极管ce两极之间,只要三极管耐压值足够就不会击穿损坏,线圈MN产生的自感电动势与电源电压方向相反,二者之差通过基极电阻Rb使得三极管基极反偏确保三极管持续截止。变压器次级线圈匝数很多,产生很高的自感电动势向外输出------想电谁就电谁

当磁芯中的磁通量减小为零(磁场能量释放完毕)后,各组线圈的感应电压消失,电路状态重新恢复到最初刚接通电路的状态,基极电流重新建立,然后重新开始上述自激振荡过程。MN线圈和NP线圈互感提供Umn,Umn为三极管提供自激振荡需要的正反馈信号

通过合理的选择元件、设置变压器匝数,振荡的频率很高(通常高达几十~几百kHz),输出的是方波电压,变压器工作在反激状态

右图为三极管截止期间的状态。图中的+、-符号表示变压器各个绕组端电位高低对比。

元件选择:电源电压3~6V。三极管选择耐压几十伏以上、最大集电极电流较大的型号,如2SC8050、9014等。如果输出功率较大,还可以选用最大集电极电流超过2A的中功率管。

磁芯变压器可从废旧节能灯电路板拆下EI变压器自行改造,磁芯规格一般为EI9、EI16、EI20等,初级MP一共为7匝、中间抽头作为N端,MN为4匝、NP为3匝,用直径0.5~1.0的漆包线绕制。次级线圈用直径0.1~0.2的漆包线绕制,具体匝数根据需要自己定,例如200匝。绕制过程注意处理好绝缘,初次级之间必须用绝缘胶布隔开,次级线圈输出端远离初级线圈引出。

基极电阻Rb可根据试验效果调整,根据三极管β值的不同,取值一般在几~几十kΩ之间。

追问

正是因为不太懂才提问,能不能帮我分析工作原理?

追答

电子电路的复杂性,远远不是初高中物理课中学过的简单串并联电路所能比拟。你如果对电子技术感兴趣,还是找几本入门书籍慢慢钻研吧。最起码把基本的三极管放大、振荡、开关电路原理学会,搞明白正反馈、负反馈等概念。

温馨提示:答案为网友推荐,仅供参考
相似回答