已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆则t的范围

如题所述

x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0
[x-(t+3)]^2+[y+(1-4t^2)]^2=-16t^4-9+(t+3)^2+(1-4t^2)^2
则-16t^4-9+(t+3)^2+(1-4t^2)^2〉0
-16t^4-9+t^2+6t+9+1-8t^2+16t^4>0
-7t^2+6t+1>0
7t^2-6t-1<0
(t-1)(7t+1)<0
-1/7<t<1
温馨提示:答案为网友推荐,仅供参考
大家正在搜