乙酰胆碱的植物生理过程

如题所述

对代谢、生长和发育的调控 乙酰胆碱可以在不影响电子传递的情况下使叶绿体中的ATP合成下降80%以上。另外,浓度低于0.1 mmol的乙酰胆碱可以刺激非环式光合磷酸化的进行,而浓度大于0.1 mmol时非环式光合磷酸化则受抑制。在这两种情况下,乙酰胆碱并不影响NADP+的还原。新斯的明(neostigmine)可以抑制ATP的合成,但不影响电子从水到细胞色素f或NADP+的传递。毒蕈碱和阿托品同样可以抑制NADP+的还原和非环式光合磷酸化。
除此以外,乙酰胆碱还可以影响离体叶绿体对氧的吸收,抑制光刺激的叶绿体膨胀;刺激钠离子和钾离子从叶绿体流出。因而,乙酰胆碱在叶绿体中可能调控叶绿体膜对离子的通透性及电子传递和ATP合成间的偶联。
对与膜透性有关的生理过程的调控 红光促使黄化的绿豆和大麦根尖吸附到带负电的玻璃杯内壁上,而远红光则使根尖脱离杯壁释放到溶液中。这种现象称为棚田效应(tanada effect)。 在黑暗中乙酰胆碱可以使离体的大豆根尖吸附到带负电的玻璃杯内壁上,并阻止远红光引起的根尖脱离杯壁,乙酰胆碱酯酶抑制剂毒扁豆碱(eserine)增加组织对乙酰胆碱的敏感性。这些说明内源乙酰胆碱可能在这一生理过程中有控制作用。
红光可提高组织中乙酰胆碱水平,其原因可能与红光促进Pfr的形成有关,而后者则与乙酰胆碱合成有关。组织中乙酰胆碱水平升高可以刺激质子从根细胞流出到溶液中,从而形成表面正电势,以致根尖被吸附到带负电的玻璃杯内壁上;远红光促使光敏素从远红光吸收型(Pfr)转变为红光吸收型(Pr),致使根尖从玻璃杯内壁释放到溶液中。但是也有实验指出乙酰胆碱在这一过程中仅相当于单价阳离子的作用。 乙酰胆碱可以刺激质子从大豆根尖细胞流出,诱导菠菜叶片膜电势的变化,抑制蓝光诱导的大豆下胚轴弯钩膜电势的超极化及该组织对钾的吸收,这些过程都涉及乙酰胆碱对膜透性的调节。
除了影响上述过程外,乙酰胆碱还可以影响组织对钙离子的吸收。Tretyn发现乙酰胆碱可以刺激黄化燕麦胚芽鞘对钙离子的吸收。乙酰胆碱酯酶的抑制剂可以增加组织对乙酰胆碱的敏感性;钙通道的抑制剂可以抑制乙酰胆碱刺激的钙吸收的增加。这些结果表明乙酰胆碱参与调控植物的钙通道。 参与植物与植物以及细胞与细胞之间的相互作用
在一个生态环境中,植物与植物之间以及植物与其他生物之间常常表现出相互作用的关系。这种相互作用可以是促进性的也可以是抑制性的,即表现为相生相克的关系。乙酰胆碱酯酶存在于根瘤菌感染大豆所形成的根瘤中,而且乙酰胆碱酯酶的最大活性与根瘤对氮的最大同化期相一致,推测乙酰胆碱及其酯酶在根瘤菌和寄主植物间的相互作用中起一定作用。乙酰胆碱酯酶还存在于地衣的叶状体中,而且主要分布于组成地衣的真菌和藻类两种生物的界面。在其粉芽(soredia)产生孢子过程中,乙酰胆碱酯酶活性增加,而且酶活性集中分布在接触区。乙酰胆碱及乙酰胆碱酯酶参与地衣这种生物间相互作用的机理可能是通过调控膜对离子的通透性,并介导环境中光对地衣生殖影响而实现的 乙酰胆碱及乙酰胆碱酯酶还可能参与花粉与柱头间的识别作用。在裂叶牵牛中乙酰胆碱酯酶主要分布在雌蕊柱头的表面,还存在于花粉粒和花粉管的尖端。乙酰胆碱的激活剂和拮抗剂以及乙酰胆碱酯酶的抑制剂均可以影响某些植物的花粉萌发和花粉管伸长。因此推测乙酰胆碱和乙酰胆碱酯酶可能参与植物柱头和花粉间的相互作用。 原生质体膨胀 红光可以刺激黄化小麦叶肉细胞原生质体体积膨胀,这种刺激作用可为随后的远红光照射所逆转,说明这一反应是在光敏素控制下进行的。红光对原生质体体积膨胀的刺激作用要求介质中含有Ca2+[44]。乙酰胆碱可以代替红光在黑暗中引起原生质体的膨胀。与红光引起的反应不同,乙酰胆碱不仅可以在含Ca2+的介质中引起原生质体的膨胀,而且在含Na+或K+的介质中也可以引起原生质体的膨胀。
除乙酰胆碱外,只有氨基甲酰胆碱可以刺激原生质体的膨胀,而胆碱、丙酰胆碱和丁酰胆碱则无此作用。乙酰胆碱酯酶的抑制剂毒扁豆碱可以增加原生质体对乙酰胆碱的敏感性。据此可以认为乙酰胆碱能特异地刺激黄化小麦叶肉原生质体膨胀
乙酰胆碱诱导原生质体膨胀过程中是否涉及乙酰胆碱受体的参与可用乙酰胆碱受体的激活剂和抑制剂来确定。乙酰胆碱N型受体的激活剂烟碱在含Na+或K+的介质中可以直接刺激原生质体膨胀,而在含Ca2+的介质中,烟碱没有作用。与以上结果不同,M型受体的激活剂毒蕈碱可以在含Ca2+的介质中刺激原生质体膨胀,而在含Na+或K+的介质中没有作用。采用乙酰胆碱受体抑制剂的研究也得出同样的结论。M型受体的抑制剂阿托品在含Na+或K+的介质中对乙酰胆碱刺激的原生质体膨胀没有作用,但在含Ca2+介质中则可以抑制乙酰胆碱诱导的原生质体膨胀。N型受体抑制剂管箭毒在含Ca2+介质中对乙酰胆碱刺激的原生质体膨胀没有作用,但在含Na+或K+的介质中则有抑制作用。荧光定位技术证明N型乙酰胆碱受体主要分布在原生质体表面。
在乙酰胆碱诱导的原生质体膨胀过程中,乙酰胆碱为受体接受后的信号转导可能涉及到Ca2+和CaM,因为Ca2+通道抑制剂尼群地平(nifedipine, NIF)和La3+可以完全抑制乙酰胆碱诱导的原生质体在含Ca2+介质中的膨胀。同样,钙调素的抑制剂和G蛋白的抑制剂也有这样的作用,而这些化合物在含Na+或K+的介质中则没有作用。
幼叶展开 生长于黑暗中8 d的小麦幼苗,其初生叶的展开受控于光敏色素系统。如果介质中含有Ca2+,乙酰胆碱在暗中可以刺激离体叶切段中幼叶的展开。在没有Ca2+而有Na+的介质中乙酰胆碱也可以刺激黄化小麦初生叶片的展开。在乙酰胆碱的各种衍生物中只有氨基甲酰乙酰胆碱可以刺激黄化小麦初生叶片的展开。乙酰胆碱受体的拮抗剂,阿托品和D-管箭毒可以分别抵消乙酰胆碱在含Ca2+和Na+介质中诱导叶片的展开。乙酰胆碱受体的激活剂,毒蕈碱和烟碱可以分别在Ca2+和Na+的介质中刺激原生质体的膨胀。乙酰胆碱诱导的Ca2+依赖的叶片开展可为Ca2+通道抑制剂尼群地平和钙调素抑制剂3-氟-甲基吩噻嗪(trifluoperazine, TFP)所减弱,其中只有钙调素抑制剂TFP可以抑制乙酰胆碱诱导的在含Na+介质中黄化小麦初生叶片的展开。
根据以上结果可以初步认为,在植物中乙酰胆碱可能以一种类似于在动物中的机制发挥作用。乙酰胆碱首先与M型和N型乙酰胆碱受体结合。与在动物细胞中一样,M型乙酰胆碱受体可能与磷酸肌醇代谢途径有关,在此途径中,G蛋白,Ca2+通道和钙调素等相继被激活,最后发生生理反应。N型受体是非磷酸肌醇依赖的,它直接控制膜对离子的通透性。这两条途径可以相互独立地引起原生质体的膨胀或叶片的张开。 乙酰胆碱在植物中的作用机理除参与调节膜对离子的通透性外,可能还涉及对植物体内某些酶活性的调控。乙酰胆碱对兵豆(Lens culinaris)根生长的抑制作用与体内过氧化物同工酶的活性变化密切相关,它可以刺激某些同工酶的活性而抑制另外一些同工酶的活性。
乙酰胆碱本身对于植物体内苯丙氨酸氨基裂解酶的活性和类黄酮的合成没有影响,但它却可以抵消红光对苯丙氨酸氨基裂解酶活性和类黄酮合成的刺激作用。
对内源生长调节物质的影响 乙酰胆碱可以影响植物体内吲哚乙酸和乙烯的代谢。在大豆下胚轴中,乙酰胆碱抑制吲哚乙酸刺激的乙烯合成并抵消它对大豆下胚轴弯钩伸直的抑制作用,它也可以抵消乙烯刺激的蕨类植物原丝体的生长。乙酰胆碱的这种作用可能是通过影响内源吲哚乙酸和乙烯的水平而实现的。以离体大豆叶片的实验证明乙酰胆碱可以抑制组织中乙烯的合成。
乙酰胆碱还可能与内源的赤霉素相互作用。它可以部分代替赤霉素诱导黄瓜下胚轴的伸长,还可以引起植物体内游离态的赤霉素含量增高,这种增高可以阿托品抵消。 帕金森病又称震颤麻痹,是一种中枢神经系统变性疾病,主要是因位于中脑部位黑质中的细胞发生病理性改变后,多巴胺的合成减少,抑制乙酰胆碱的功能降低,则乙酰胆碱的兴奋作用相对增强。两者失衡的结果便出现了震颤麻痹。
黑质细胞发生变性坏死的原因迄今尚未明了, 可能与遗传和环境因素有关。有学者认为蛋白质、水果、乳制品等摄入不足,嗜酒、外伤、过度劳累及某些精神因素等,均可能是致病的危险因素。 原因不明的多巴胺减少导致的震颤麻痹,在医学上称为原发性震颤麻痹,即帕金森病; 人的脑组织有大量乙酰胆碱,但乙酰胆碱的含量会随着年龄的增加而下降。正常老人比青年时下降30%,而老年痴呆患者下降更为严重,可达70%~80%。美国医生伍特曼观察到老年人脑组织乙酰胆碱减少,就给老年人吃富含胆碱的食品,发现有明显的防止记忆减退的作用。英国和加拿大等国的科学家也相继进行了研究,一致认为只要有控制地供给足够的胆碱,可避免60岁左右老年人记忆力减退。所以保持和提高大脑中乙酰胆碱的含量,是解决记忆力下降的根本途径。在自然界是,乙酰胆碱多以胆碱的状态存在于蛋、鱼、肉、大豆等之中,这些胆碱必须在人体内起生化反应后,才能合成具有生理活性的乙酰胆碱。另外,经常服用蜂王浆可以提高脑内乙酰胆碱的含量,从而促进激活脑神经传导功能,提高信息传递速度,增强大脑记忆能力,全面改善脑功能,并能延缓衰老。

温馨提示:答案为网友推荐,仅供参考
相似回答