样品的磁化强度在温度达到居里点时发生突变的微观机理是什么?用磁畴理论进行解释。

如题所述

样品的磁化强度在温度达到居里点时发生突变的微观机理是,铁磁性物质的磁化与温度有关,存在一临界温度Tc称为居里温度(也称为居里点)。

当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度Tc时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。

如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M(实为自发磁化强度)剧烈下降,因为这时分子热运动足以使相邻原子(或分子)之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列,此时磁畴消失,铁磁性变为顺磁性

当铁磁质处于外磁场中时

那些自发磁化方向和外磁场方向成小角度的磁畴其体积随着外加磁场的增大而扩大并使磁畴的磁化方向进一步转向外磁场方向。另一些自发磁化方向和外磁场方向成大角度的磁畴其体积则逐渐缩小,这时铁磁质对外呈现宏观磁性。当外磁场增大时,上述效应相应增大,直到所有磁畴都沿外磁场排列达到饱和。由于在每个磁畴中个单元磁矩已排列整齐,因此具有很强。

以上内容参考:百度百科-铁磁畴

温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-12-17

样品的磁化强度在温度达到居里点时发生突变的微观机理是,铁磁性物质的磁化与温度有关,存在一临界温度Tc称为居里温度(也称为居里点)。当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度Tc时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M(实为自发磁化强度)剧烈下降,因为这时分子热运动足以使相邻原子(或分子)之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列,此时磁畴消失,铁磁性变为顺磁性。

详细解析:

由于

 

外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的”交换耦合“作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。如图1所示,给出了多晶磁畴结构示意图。当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴其体积随着外加磁场的增大而扩大并使磁畴的磁化方向进一步转向外磁场方向。另一些自发磁化方向和外磁场方向成大角度的磁畴其体积则逐渐缩小,这时铁磁质对外呈现宏观磁性。当外磁场增大时,上述效应相应增大,直到所有磁畴都沿外磁场排列好,介质的磁化就达到饱和。

 

图1 未加磁场多晶磁畴结构

 

 

图2 加磁场时多晶磁畴结构

由于在每个磁畴中元磁矩已完全排列整齐,因此具有很强的磁性。这就是为什么铁磁质的磁性比顺磁质强得多的原因。介质里的掺杂和内应力在磁化场去掉后阻碍着磁畴恢复到原来的退磁状态,这是造成磁滞现象的主要原因。铁磁性是与磁畴结构分不开的。当铁磁体受到强烈的震动,或在高温下由于剧烈运动的影响,磁畴便会瓦解,这时与磁畴联系的一系列铁磁性质(如高磁导率、磁滞等)全部消失。对于任何铁磁物质都有这样一个临界温度,高过这个温度铁磁性就消失,变为顺磁性,这个临界温度叫做铁磁质的居里点。

第2个回答  推荐于2018-05-01
样品的磁化强度在温度达到居里点时发生突变的微观机理是,铁磁性物质的磁化与温度有关,存在一临界温度Tc称为居里温度(也称为居里点)。当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度Tc时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M(实为自发磁化强度)剧烈下降,因为这时分子热运动足以使相邻原子(或分子)之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列,此时磁畴消失,铁磁性变为顺磁性。本回答被提问者和网友采纳
相似回答