欧拉定理的具体内容是什么

如题所述

在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。

参考资料:http://baike.baidu.com/view/48903.html?wtp=tt

温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-10-12
定理内容  设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2Rr.
证明
  O、I分别为⊿ABC的外心与内心.
  连AI并延长交⊙O于点D,由AI平分ÐBAC,故D为弧BC的中点.
  连DO并延长交⊙O于E,则DE为与BC垂直的⊙O的直径.
  由圆幂定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直线OI与⊙O交于两点,即可用证明)
  但DB=DI(可连BI,证明ÐDBI=ÐDIB得),
  故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可.
  而这个比例式可由⊿AFI∽⊿EBD证得.故得R^2-d^2=2Rr,即证.
第2个回答  2011-11-06
V+F-E=2的证明
方法1:(利用几何画板)
  逐步减少多面体的棱数,分析V+F-E   先以简单的四面体ABCD为例分析证法。   去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1   1.去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。   2.从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。   以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。   对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。
方法2:计算多面体各面内角和
  设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα   一方面,在原图中利用各面求内角总和。   设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:   Σα = [(n1-2)·180度+(n2-2)·180度+…+(nF-2) ·180度]   = (n1+n2+…+nF -2F) ·180度   =(2E-2F) ·180度 = (E-F) ·360度 (1)   另一方面,在拉开图中利用顶点求内角总和。   设剪去的一个面为n边形,其内角和为(n-2)·180角,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·360度,边上的n个顶点处的内角和(n-2)·180度。   所以,多面体各面的内角总和:   Σα = (V-n)·360度+(n-2)·180度+(n-2)·180度   =(V-2)·360度(2)   由(1)(2)得:(E-F) ·360度=(V-2)·360度   所以 V+F-E=2.
方法3 用拓扑学方法证明欧拉公式
   图
尝试一下用拓扑学方法证明关于多面体的面、棱、顶点数的欧拉公式。   欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假设F,E和V分别表示面,棱(或边),角(或顶)的个数,那末   F-E+V=2。   证明 如图(图是立方体,但证明是一般的,是“拓朴”的):   1.把多面体(图中①)看成表面是薄橡皮的中空立体。   2.去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。   3.对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。   4.如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。   5.如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。   6.这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。   7.因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。   8.如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。   即F′-E′+V′=1   成立,于是欧拉公式:   F-E+V=2   得证。本回答被提问者采纳
相似回答