保留值受溶质分子结构、烷基键合固定相的特性、流动相性质影响。
1、溶质分子结构
在反相键合相色谱法中,溶质的分离以它们的疏水结构差异为依据的,溶质的极性越弱,疏水性也强,保留值越大。根据疏溶剂理论,溶质的保留值与其分子中非极性部分的总表面积有关,其与烷基键合固定相结出的面积愈大,保留值越大。
2、烷基键合固定相的特性
烷基键合固定相的作用在于提供非极性作用表面,因此键合到硅胶表面的烷基数量就决定着溶质容量因子的大小。烷基的疏水特性随碳链的加长而增加,溶质的保留值也随着烷基碳链长度的增加而增人。
随着烷基碳链的增长,增加了键合相的非极性作用的表面积,其不仅影响溶质的保留值,还影响色谱柱的选择性,即随烷基碳链的加长其对溶质分离的选择性也增大。
3、流动相性质
流动相的表面张力愈大,介电常数愈大,其极性越强,此时溶质与烷基键合相的缔合能力越强,流动相的洗脱强度弱,导致溶质的保留值越大。
扩展资料
保留值主要由固定相比表面积、键合相种类和浓度决定。
保留值通常随链长增长或键合相的疏水性增强而增大,对于非极性化合物通常遵循以下规则:(弱)非键合硅胶《氰基<C1(TMS)<C3<C4<苯基<C8≈C18(强)。
溶质保留值与固定相表面积成正比,普通载体(80A°)的比表面积约为250m²/g,而300A°孔径载体的比表面积约为60m²/g。
当其他条件相同时,溶质在300A°孔径(低表面积)色谱柱上的保留值大约为80A°孔径色谱柱上保留值的1/4(60:250),小孔隙柱如高保留的C18柱或石墨柱有利于强亲水性样品洗脱。
样品的保留值也可以通过改变流动相组成或溶剂强度来调整,溶剂强度取决于有机溶剂的性质和其在流动相中的浓度。在反相色谱中,采用高溶剂强度、低极性的流动相时可获得较低的保留值。
固定相的不同也可以导致选择性发生变化,氰基柱、苯基柱、C8柱、C18柱等的选择性有很大差异,一般应优先考虑C8柱、C18柱,然后是氰基柱,再次是苯基柱。
参考资料来源:百度百科-反相高效液相色谱
参考资料来源:百度百科-反相色谱