量子的不确定性是怎么证明的?

有证明过程的请发证明过程,并且最好详细说明下,或者用通俗的语言解释下。最好还带上相关历史、科学家资料,谢谢!
1楼的说通俗点好吗?为什么有波长就会产生偏差?为什么速度越精确 位置就越不精确?

量子的不确定性是通过一些实验来论证的。比如:

用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。

但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。

所以,简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确;如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置  。

扩展资料

在量子力学中常见不确定性有关于坐标和动量之间和时间与能量之间的不确定关系。其实,对于任何两个不对易的物理量均不能同时确定其确切值。这是与测量无关的,这是微观世界的本质问题。

不要试图通过测量之类的方法来解释不确定性,任何有关测量的手段都会引入新的误差,可误差与不确定性是存在本质的区别的。另外,对于宏观世界中并不能观察到不确定性之类的现象,这是与可观察的测量精度有关的,因而仅是在微观世界比较明显。

参考资料来源:百度百科-不确定性原理

参考资料来源:百度百科-不确定性

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2016-07-13
  测量速度和位置都是靠观察,观察就说明有光子撞在电子上反弹回来进入我们的眼睛。
  量子(quantum)是现代物理的重要概念。最早是M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍。后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。
第2个回答  2007-04-01
从你的问题看来你因该很=不是物理专业的,那么我可以和负责任地的告诉你没有相关的专业知识要理解测不准关系恐怕是很困难的。想用通俗的方法说清楚如果证明的恐怕是不可能的。不过我就我所知道的尽量简单的回答,希望能对你有所帮助。

测不准关系的简单导出:

我们知道,在实验中波的波长是无法直接测量的,一般采用的是“拍”的方法。比如要想侧量一个震幅恒定,频率为v1的波长,侧可以去取一频率已知的波长v2与之发生干涉,即形成一个“拍”
从干涉的性质和对叠加波的数学分析(傅立叶变换)可以知道,要观察到一个拍,至少要需要1/dv 的时间 dv=|v1-v2| .即我们得到这样的关系:

dt>=1/dv (1式) ,道理上也很好理解,想知道一个波的波长至少应当观察其一个周期的时间 1/v1 1/v2 ,那么两个波干涉后最小的频率(波峰波谷削弱处)因当是|v1-v2|,所以观察一个拍的最小时间应当是1/dv
设波速为u 则在dt时间所走过的路程为dx=udt,带入上面的关系,则有:dx/du>=1/dv 又因为v=u/λ ,则dv=(u/λ^2)*dλ 所以便得到:
dxdλ>=λ^2 (2式)
我们同时应当知道量子力学的重要关系,德布罗意物质波关系式:
λ=h/p λ是波长,p是物体的动量,h是普朗克常数h=6.62*10^-34js
意义就是任何物体的波长(物质波)等于普朗克常数比该物体的动量。你可以算算自己跑步时的波长,是一个很小的数。同时德布罗意关系也表达了一个概念,任何运动的物质都有波长了,把经典物理中原本不相干的波和质点联系在一起。
明白了德布罗意关系,我们从式λ=h/p可得到dλ=dxdph/p^2,带入2式,可以得到:dxdλ=dxdph/p^2>=λ^2 dxdp>=(λp)^2/h=h^2/h=h
即:dxdp>=h
dxdp>=h 即为测不准关系的表达式。dx,dp 代表位置、动量测量的不确定度,h为普朗克常数。 其意义是,位置和动量测量的不确定度的乘积不小于普朗克常数。从数学关系可以看出两个部确定度成反比,即dx越小(代表位置测量越精确),dp就越大,反之亦然。想要确定测量一个量,比如位置,就要求dx趋于零,那么dp就会趋于无穷大。

对于理解测不准关系,你可以这样形象的想象一下(注意,很不严谨,仅仅是帮助你想象)。要想测量一个粒子的位置和动量,就必须将其限制在一定范围内才可以测量。想象测量玻璃珠时要用两个尺子将其夹住,然后才能确定其位置)。想要精确测量粒子的位置,就要求尺子越小越好,和粒子靠得越近越好。但是由于任何粒子都是具有波动性的,当尺子间的距离小到一定程度时,粒子就很容易绕过尺子,从而变得无法测量了。
第3个回答  2007-04-02
测不准关系的简单导出:

我们知道,在实验中波的波长是无法直接测量的,一般采用的是“拍”的方法。比如要想侧量一个震幅恒定,频率为v1的波长,侧可以去取一频率已知的波长v2与之发生干涉,即形成一个“拍”
从干涉的性质和对叠加波的数学分析(傅立叶变换)可以知道,要观察到一个拍,至少要需要1/dv 的时间 dv=|v1-v2| .即我们得到这样的关系:

dt>=1/dv (1式) ,道理上也很好理解,想知道一个波的波长至少应当观察其一个周期的时间 1/v1 1/v2 ,那么两个波干涉后最小的频率(波峰波谷削弱处)因当是|v1-v2|,所以观察一个拍的最小时间应当是1/dv
设波速为u 则在dt时间所走过的路程为dx=udt,带入上面的关系,则有:dx/du>=1/dv 又因为v=u/λ ,则dv=(u/λ^2)*dλ 所以便得到:
dxdλ>=λ^2 (2式)
我们同时应当知道量子力学的重要关系,德布罗意物质波关系式:
λ=h/p λ是波长,p是物体的动量,h是普朗克常数h=6.62*10^-34js
意义就是任何物体的波长(物质波)等于普朗克常数比该物体的动量。你可以算算自己跑步时的波长,是一个很小的数。同时德布罗意关系也表达了一个概念,任何运动的物质都有波长了,把经典物理中原本不相干的波和质点联系在一起。
明白了德布罗意关系,我们从式λ=h/p可得到dλ=dxdph/p^2,带入2式,可以得到:dxdλ=dxdph/p^2>=λ^2 dxdp>=(λp)^2/h=h^2/h=h
即:dxdp>=h
dxdp>=h 即为测不准关系的表达式。dx,dp 代表位置、动量测量的不确定度,h为普朗克常数。 其意义是,位置和动量测量的不确定度的乘积不小于普朗克常数。从数学关系可以看出两个部确定度成反比,即dx越小(代表位置测量越精确),dp就越大,反之亦然。想要确定测量一个量,比如位置,就要求dx趋于零,那么dp就会趋于无穷大。

对于理解测不准关系,你可以这样形象的想象一下(注意,很不严谨,仅仅是帮助你想象)。要想测量一个粒子的位置和动量,就必须将其限制在一定范围内才可以测量。想象测量玻璃珠时要用两个尺子将其夹住,然后才能确定其位置)。想要精确测量粒子的位置,就要求尺子越小越好,和粒子靠得越近越好。但是由于任何粒子都是具有波动性的,当尺子间的距离小到一定程度时,粒子就很容易绕过尺子,从而变得无法测量了。
第4个回答  2007-03-31
最初的理论

终于在1925-26年间,定量描述物质量子特性的最初理论---量子力学诞生了,并且是以两种不同的面孔---矩阵力学和波动力学接连出现的。1925年7月,海森伯在玻尔原子理论的基础上,发现了将物理量(如位置、动量等)及其运算以一种新的形式和规则表述时,物质的量子特性,如原子谱线的频率和强度可以被一致地说明,这是关于量子规律的一种奇妙想法。之后,玻恩和约丹进一步在数学上严格地表述了海森伯的思想,他们指出了海森伯所发现的用于表述物理量的新形式正是数学中的矩阵,而物理量之间的运算就是矩阵之间的运算。同时,玻恩和约丹还发现了用于表达粒子位置和动量的矩阵之间满足一个普遍的不对易关系,即[p,q]=ih。基于这一表达量子本性的对易关系,玻恩、约丹和海森伯终于建立了一个全新的量子理论体系---矩阵力学,这一理论只涉及测量结果,而并不涉及原子系统的量子状态和测量过程。

在矩阵力学建立的同时,另一种基于德布罗意物质波概念的新力学正在孕育。1925年末,在爱因斯坦的建议下,薛定谔仔细研究了德布罗意的论文,并产生了物质波需要一个演化方程的想法。1926年初,经过反复尝试和努力之后,薛定谔终于发现了物质波的非相对论演化方程,即今天人们熟知的薛定谔方程。薛定谔方程的发现标志了量子力学的另一种形式体系---波动力学的建立。

波动力学为物质的量子表现提供了进一步的直观图像(即波函数)说明,同时,在波动力学中,位置与动量之间的对易关系成为了波动方程的一个自然结果,而不是如矩阵力学那样,只能假设它的存在。在此意义上,波动力学优于矩阵力学。

1926年下旬,看上去非常不同的矩阵力学和波动力学很快被证明在数学上是等价的。薛定谔首先证明了波动力学与矩阵力学的等价性,之后,狄拉克进一步通过变换理论把矩阵力学和波动力学统一起来。至此,量子力学的理论体系被创建完成。

从此,人类开始进入量子时代。越来越多的人投入到量子力学的应用研究中,基于量子规律的新技术也不断涌现,这些量子技术深深地改变了人类的生活,其中最引人注目的成就就是激光技术和电子计算机的出现。

反对者们

人类完全有理由为这些辉煌的量子成就而骄傲,然而在这些成就背后却隐藏着一个令人不安的事实,那就是我们至今仍然不理解量子,而其根源在于量子力学并不完善。

1926年,玻恩在量子力学建立后不久即提出了量子力学的几率波解释,之后这一解释又进一步为海森伯的不确定关系和玻尔的互补性原理所补充,它们共同形成了量子力学的正统解释。在1927年的第五届索尔维会议之后,这一解释渐渐为更多的物理学家所接受。

然而,反对者们依然存在,其中主要包括量子力学的奠基者和创立者---爱因斯坦和薛定谔,他们分别以EPR悖论和薛定谔猫来对量子力学的正统解释进行反驳。20世纪50年代,当新一代物理学家们成长起来之后,正统解释开始受到越来越多的怀疑和攻击,并且人们也开始寻求对量子的新的理解。玻姆的隐变量解释和埃弗雷特的多世界解释就是其中最有生命力的两种解释,它们至今仍为很多物理学家所信奉和讨论。

不相容危机

爱因斯坦最早注意到量子力学与相对论的不相容性。在1927年的第五届索尔维会议上,爱因斯坦对刚刚建立的量子力学理论表示了不满,他在反对意见中指出,如果量子力学是描述单次微观物理过程的理论,则量子力学将违反相对论。1935年,在论证量子力学不完备性的EPR文章中,爱因斯坦再一次揭示了量子力学的完备性同相对论的定域性假设之间存在矛盾。在爱因斯坦看来,相对论无疑是正确的,而量子力学由于违反相对论必然是不正确的,或者至少是不完备的。

1964年,在爱因斯坦的EPR论证的基础上,贝尔提出了著名的贝尔不等式,这一不等式进一步显示了相对论所要求的定域性与量子力学之间的深刻矛盾,并提供了利用实验来进行判决的可能性。根据贝尔的分析,如果量子力学是正确的,它必定是非定域的。利用贝尔不等式,人们进行了大量实验来检验量子力学的正确性,其中最有说服力的是阿斯派克特等人于1982年所做的实验,他们的实验结果证实了量子力学的预言,并显示了量子非定域性的客观存在。

尽管量子非定域性的存在已经为实验所证实,然而,量子力学与相对论的不相容问题至今仍然没有得到满意的解决。根本原因在于,一方面,量子力学的理论基础仍没有坚实地建立起来,另一方面,量子力学所蕴含的非定域性又暗示了相对论的普适性将同样受到怀疑。

松散的基础

费因曼于60年代曾经说过,没有人理解量子力学。今天,情形依然如旧。即使量子力学已出现并被广泛应用近四分之三个世纪,即使它的大多数创立者已乐观地认为它是一个完善的理论,即使今天量子理论的正统解释已为人们普遍接受,但事实仍然是:量子力学甚至还不能称为一种理论。

首先,量子力学没有解决理论所描述的物理对象问题,人们对于理论中所出现的波函数还没有找到一个满意的物理解释,甚至不清楚波函数究竟是描述什么的。人们放弃了经典运动图像,却没有给出微观粒子真实的客观运动图像。

其次,量子力学本身没有解决测量问题,它没有描述理论与经验的连接纽带---测量过程,人们至今还不清楚波函数的测量投影过程是客观的还是主观的,亦或是一种虚幻。在量子力学中,测量过程被简单地当作是一种瞬时的、非连续的波函数投影过程,然而对于这一过程为何发生及如何发生它却说不清楚,因此,目前的量子理论对测量过程的描述是不完备的。另一方面,一旦将测量投影过程解释为一种客观的物理过程,它的存在将明显与相对论不相容,这导致了人们一直在投影过程的客观性和相对论的有效性之间摇摆不定,从而在很大程度上阻碍了对量子测量问题的解决,并进而阻碍了人们对波函数的物理含义的探求。

目前,越来越多的物理学家已认识到量子测量问题是目前量子理论中最重要,也是最棘手的物理问题,它的最终解决将不仅使现有量子理论更加完善,同时也将为量子理论与相对论的结合铺平道路。

引力也来“捣乱”

量子理论与引力的结合,即量子引力理论同样遇到了前所未有的困难。困难的根源来自于这两个理论的概念体系之间存在着固有的不相容性,这种不相容性更加基本,也更加深刻,它可能危及整个理论大厦。

一方面,根据量子理论,粒子波函数的一致定义需要预先给定的确定的时空结构,另一方面,根据目前的引力理论---广义相对论,时空结构将由粒子的波函数动态地决定,而粒子波函数所决定的时空结构一般却是不确定的。量子理论与广义相对论的这种不相容性暗示了量子理论中满足线性叠加定律的粒子波函数可能本质上已无法严格定义,于是量子理论中波函数的线性演化规律也将失效。这一结论的一个直接后果是,它将为波函数投影过程的存在提供一个自然的客观解释,从而可彻底解决量子测量问题,因此量子理论本身所存在的问题似乎需要广义相对论的帮助才能最终得以解决。

另一方面,量子理论也将对广义相对论所依赖的连续时空观念产生根本影响。人们已经证明,量子理论和广义相对论的适当结合将导致实验上所能测量到的最小的时间尺度和空间尺度不再是任意小,而是有限的普朗克时间和普朗克长度;同时,量子引力理论中恼人的时间问题也从理论上暗示了时间的连续性假设是不适当的。因此可以预计,只有放弃时空的连续性假设,我们才能从根本上解决量子理论与广义相对论的相容性问题,进而为量子引力理论提供一个一致的理论框架,而这无疑将再一次大大加深我们对时间、空间和运动的理解。

混乱的现状

人们关于量子力学看法的不一致可以通过下述事实最明显地说明,即量子理论的两位奠基人---爱因斯坦和玻尔竟为此进行了长达近30年的争论,并且最终也没有获得一致的意见。对于量子理论,谁还能比他们更有发言权呢?在这两位科学巨人离开我们近半个世纪后的今天,情况变得更糟,新的看法和解释不断涌现,不同的物理学家对量子理论几乎都持有不同的看法。

1997年8月,在UMBC(马里兰大学)举行的量子力学讨论会上,物理学家们对他们最喜欢的量子力学解释进行了投票表决,下表是投票结果:

量子力学的解释
投票数

哥本哈根解释 13
多世界解释 8
隐变量解释 4
一致历史 4
修正的量子动力学(GRM/DRM) 1
其他解释(包括未决定者) 18

图1 量子力学解释排名

实际上,更多的物理学家是实用型的,他们只专注于量子理论的应用,而根本不顾及它的基础是否坚实可靠。

拨开迷雾

如果你觉得量子力学难以理解甚至不可理喻,这并不奇怪,因为你生活在经典世界中,你看到的和经历的都是经典物体和它们的连续运动,并且从一开始你所受的科学教育也都是牛顿的经典力学。然而,这一切对于量子世界中的粒子和运动都已不再适用,每个人都会有一种脚下的地面突然被抽去的感觉。是的,你正在进入一个完全陌生的世界,通常的感觉和经验不再能帮助你,你需要利用理性的光辉来照亮前进的道路。不必担心,跟随我们,保持开放的思维,并乐于去理解,你会渐渐认识这个新的量子世界,并真正窥见它的神秘和美丽。

这里我们从一个最典型的例子---双缝实验讲起,这个例子“包含了量子力学的唯一神秘”(费因曼语)。通过这个例子,我们将让你最终熟悉并理解自然最神秘的量子本性。

自20世纪20年代量子力学建立以来,关于微观粒子(如电子,光子等)是如何通过双缝的问题一直未被真正客观地解决。尽管正统观点认为它已给出了满意的答案,但由于答案中并未给出粒子通过双缝的客观运动图像,实际上,这一图像的存在已为正统观点所否定,因此喜欢客观实在性观念的人们一直在问:“但是,粒子究竟是如何通过双缝的呢?”。

图1 双缝实验示意图

上图是双缝实验的示意图。我们以光子为例来讨论,假设单个光子可以相继从光源S发出,然后通过光阑A的两条狭缝到达光敏屏B。这样,当有大量光子到达光敏屏后将形成双缝干涉图样,在干涉峰处光子到达的数目最多。

首先,我们看一看利用连续运动图像是否可以解释光子通过双缝所形成的干涉图样。根据粒子的连续运动图像,在双缝实验中光子每次只能穿过两条狭缝中的一条,并且不受另一条狭缝的影响。于是很显然,双缝干涉图样应该和分别打开每条缝时所产生的单缝干涉图样的混合图样一致,因为双缝实验中每次单个光子通过的情形将同样出现在单缝实验中。但是,至今关于光子的双缝实验都否定了这个结论,这两种情况下所产生的干涉图样并不一样,这就是利用连续运动来理解双缝实验所导致的困惑。实际上,我们可以通过下述事实更容易地看出困惑所在,即当一条狭缝关闭时,光子会到达屏上的某一位置,然而当这条狭缝打开时,它将阻止并不通过这条狭缝的光子到达屏上的上述位置。

我们没有出路,只有放弃粒子的连续运动图像。量子力学的正统解释也同样放弃了这一图像,然而它却同时放弃了所有可能的粒子运动图像,并证明这种放弃竟是理论的必然。于是,正统解释不仅没有给出粒子通过双缝的客观运动图像,并且还惊人地宣称这不是它的无能,而是因为这一图像根本就不存在。下面我们看一看正统解释是如何“瞒天过海”的,又是在哪里“露出马脚”的。

正统解释首先隐含地假定了连续运动是唯一可以存在的客观运动形式,然后它通过类似于上面的论证证明了连续运动无法解释量子力学所预测的双缝干涉图样。于是,正统解释抛弃了连续运动这一可能的客观运动形式,而由于连续运动的唯一性,正统解释便得到下述结论:不存在客观的运动形式,或者说,不存在独立于观察的客观实在,当你谈论微观粒子的某种性质时,你必须测量这种性质。进一步地,正统解释在测量的意义上解释了双缝实验的怪异,并认为这是唯一可能的客观解释。这一解释可简单叙述如下:如果想知道光子如何通过双缝形成双缝干涉图样,你就必须利用位置测量直接观察光子究竟通过哪条狭缝,而根据量子力学,这一位置测量无疑将破坏掉双缝干涉图样,因此在双缝干涉图样不被破坏的前提下,我们无法测定光子究竟通过哪条狭缝,从而也就无法知道光子如何通过双缝形成双缝干涉图样。于是正统解释认为,光子通过双缝的客观运动图像在本质上是不存在的。

正统解释的上述论证看似天衣无缝,的确,它几乎欺瞒了20世纪的所有伟大人物,然而,上述证明中却存在两个致命的缺陷。其一是正统解释隐含地假设了连续运动是唯一可以存在的客观运动形式,但并未给出充分的证明或说明。实际上,这一隐含的假设从没有人认真怀疑过,甚至可以说,从没有人指出它是一个假设,因为几乎所有人,包括反对正统解释的人们,如爱因斯坦,都如此深信它,并认为它的正确性是显然的。然而,它却是根深蒂固的偏见,它被成功的经验和伟人的教诲喂养长大,但最后它却禁锢了人们的思想,并试图去抹煞经验背后的实在。的确,导致人们深信上述假设的原因有很多,其中来自经验和历史的原因可能起了决定性的作用,但人们很少去考虑这一假设自身的合理性,也从没认真想过还存在其它可能的、甚至是更为基本的运动形式,即使他们面对量子力学不得不抛弃连续运动时也依然如此。人们为什么如此笃信呢?一个有趣的原因可能是,在量子力学出现以前,人们没有必要怀疑这一假设,而在量子力学出现以后,正统解释又禁止了人们去怀疑这一假设。

上述证明中的第二个缺陷是一个技术性缺陷,即在测量上它只考虑(利用位置测量)去观察光子究竟通过哪条狭缝。这一缺陷实际上由第一个缺陷所导致,因为在正统解释对双缝实验进行测量意义上的解释时,它仍假设客观运动形式,如果存在,只能是连续运动。因此,正统解释只考察了利用位置测量去观察光子究竟通过哪条狭缝,而丝毫没有想过光子的客观运动形式可以是不同于连续运动的其它形式,从而可能以某种方式“同时”通过两条狭缝,而我们的测量也必须设计得可以适应这种运动形式。于是,正统解释始终执拗地在某条缝处进行位置测量,殊不知这正中了量子力学的计谋,它因此可以轻易地用测量投影过程来对付正统解释的这种测量探求,并成功地隐藏了量子的真实面目。根据量子力学,这种测量将破坏光子的真实运动状态,并导致光子投影到单条缝处,从而不仅破坏了双缝干涉图样,同时也无法使我们看到光子真实的客观运动形式。可以看出,正统解释论证中的第一个缺陷从根本上阻碍了人们提出不同于连续运动的客观运动形式,而第二个缺陷则进一步阻碍了人们发现这种运动的具体形式。

一旦意识到正统解释的上述技术性缺陷,我们就可以尝试采用新的测量方式,它可以对付光子以某种方式“同时”通过两条狭缝的可能情况,并且不引发量子力学的投影过程,从而可以帮助我们窥见量子的真实面目。实际上,人们已经发现了这种测量方式,它就是由阿哈朗诺夫等人于1993年所提出的保护性测量。由于在双缝实验中我们预先知道光子的量子态,从而原则上可以采取相应的保护性措施,使我们既可以测量出光子真实的量子态或客观运动状态,又可以不破坏光子的量子态,从而也不破坏双缝干涉图样。因此,我们利用保护性测量就可以在不破坏双缝干涉图样的前提下,发现光子真实的客观运动形式。

非连续的运动

双缝实验清晰地告诉我们,微观粒子的运动是非连续的,非连续运动是自然留给我们的唯一选择。下面我们将给出光子通过双缝的量子运动图像,但是在此之前,我们还必须再驱除人们思想中所固有的关于“同时”的偏见,因为它也一直在阻止人们去发现光子通过双缝的客观运动图像。

我们要指出,一直被认为是正确的粒子不能同时通过双缝的结论是经不起深究的,人们对此结论中“同时”的理解只是局限在“同一时刻”这个框架内,并且将粒子不能于同一时刻处于两个不同的空间位置这一看法等效于不存在半个微观粒子这一正确事实,从而否证了连续运动之外的其他运动形式的存在,这最终导致了没有量子的正统量子观点。实际上,我们应该抛弃关于“同时”的狭隘理解,由于双缝的缝长是有限的,而不是零,双缝论证中的“同时”应指极短的有限时隙,而不是同一时刻。

现在,我们终于可以发现光子通过双缝的客观运动图像,即光子的量子运动图像了,它就是:进行量子运动的光子于极短的有限时隙内非连续地“同时”经过双缝,尽管它于此时隙内的某个时刻只能位于一条缝中,但是在不同时刻它可以处于不同的缝中,从而在很短的时间内通过两条缝。由于光子的运动是这种非连续的量子运动,我们将很容易解释光子双缝干涉图样的怪异,因为在每次实验中光子都非连续地通过了两条缝,从而到达屏上的光子同时含有了两条缝的信息,而不只是一条缝的信息,因此双缝干涉图样自然不会是两个单缝图样的简单混合。

新的曙光

最近,随着《量子运动与超光速通信》一书的出版,一种基于非连续量子运动的更完备的量子理论被提出来。在这本书中,作者通过对宏观连续运动的深刻分析,利用清晰严谨的逻辑论证和有力的实验证实提出了物质的基本运动形式---非连续量子运动及其规律,并令人信服地论证了微观运动与宏观运动都是量子运动的表现。这不仅解决了量子力学中波函数的物理含义问题,为波函数的测量投影过程提供了客观的物理解释,并且将人们对微观世界与宏观世界的描述有机地统一起来。在此基础上,作者进一步分析了量子运动所蕴含的奇妙的量子非定域性,给出了将量子力学与相对论相融合的途径,并对基于量子非定域性的超光速通讯进行了大胆的探索。

量子是什么?

现在,人们终于明白了量子是什么,并可以解开所有的量子困惑了。量子就是物质粒子的非连续运动,而所有的量子困惑都起源于这种非连续运动。

正是这种非连续运动导致了原子系统分立能级的存在,这种能量分立性最早为普朗克于1900年所发现,它的发现标志了量子时代的开端;正是这种非连续运动导致了光波的粒子性表现,这使年轻的爱因斯坦于1905年试探性地假设了光量子的存在,并用它成功地解释了光电效应。这种非连续运动还导致了原子系统的稳定存在,这种稳定存在表现为玻尔于1913年所大胆假设的原子定态,而原子的稳定性在当时仍是一个谜,连续运动无法解释这一现象。

正是这种非连续运动导致了物质的波粒二象性,爱因斯坦于1909年最早注意到了光具有这种神秘性质,而德布罗意在1923年最终将这种性质赋予了所有物质粒子;正是这种非连续运动导致了量子跃迁的存在和非连续性的出现,爱因斯坦最早认识到普朗克量子假说隐含着这种非连续性,以及它可能给物理学所带来的革命性变革,玻尔于1913年进一步假设了定态之间存在本质上非连续的量子跃迁,并一直主张所有原子过程都包含非连续性。

正是这种非连续运动导致了粒子运动方程的类波动形式,薛定谔于1926年最早发现了这一方程的近似形式,建立了量子力学的形式体系之一---波动力学;也正是这种非连续运动导致了波函数投影过程的存在,冯诺依曼最早严格地表述了这一过程的瞬时形式,并将它作为波函数的一种特殊演化过程。这种投影过程进一步导致了宏观物体的连续运动表现,因此,我们熟悉的连续运动只是非连续运动的一种特殊的理想化形式。

正是这种非连续运动导致了量子非定域性的存在,爱因斯坦于1927年最早注意到了量子的这一神秘特性,并指出了它与相对论的不相容性,然而爱因斯坦却嘲讽地称之为“幽灵般的超距作用”,同样,玻尔也利用互补性来避开它的真实存在,但实验却严格证明了量子非定域性的客观存在;也正是这种非连续运动导致了量子以太---特殊惯性参照系的存在,从而导致相对论必须被修正。

当然,正是这种非连续运动导致了今天诸多量子新技术的出现,如量子通信,量子计算等等。最终,正是这种非连续运动导致了微观世界的存在,从而允许宏观世界和我们自身的存在。

如果物质的运动不是连续运动,那它就是非连续运动,这是一个简单而直接的逻辑推理。如果你理解了这一点,你也就理解了量子,并知道了量子是什么。

http://www.zisi.net/bbs/Archive_view.asp?boardID=22&ID=10266看图
相似回答