第1个回答 2012-08-24
(1)因为判别式=m^2-4(m-2)=(m-2)^2+4>0 ,
因此对任意实数 m ,方程 x^2-mx+m-2=0 总有两个不相等的实根,
即 y=x^2-mx+m-2 的图像与 x 轴总有两个不同的交点。
(2)设 y=0 的两个根分别为 x1、x2 ,
则 x1+x2=m,x1*x2=m-2 ,
因此 |x2-x1|^2=(x1+x2)^2-4x1*x2=m^2-4(m-2)=(m-2)^2+4 ,
由此知,当 m=2 时,|x2-x1| 取最小值 2 。