中位线的性质

如题所述

中位线

1.中位线概念: 

(1)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 

(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线. 

注意: 

(1)要把三角形的中位线与三角形的中线区分开.三角形中线是连结一顶点和它的对边中点的 线段,而三角形中位线是连结三角形两边中点的线段. 

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段. 

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线. 

2.中位线定理: 

(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 

(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

中位线是三角形与梯形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用. 

例1 如图2-53所示.△ABC中,AD⊥BC于D,E,F,△ABC的面积.

分析 由条件知,EF,EG分别是三角形ABD和三角形ABC的中位线.利用中位线的性质及条件中所给出的数量关系,不难求出△ABC的高AD及底边BC的长.

解 由已知,E,F分别是AB,BD的中点,所以,EF是△ABD的一条中位线,所以

由条件AD+EF=12(厘米)得

EF=4(厘米),

从而 AD=8(厘米),

由于E,G分别是AB,AC的中点,所以EG是△ABC的一条中位线,所以

BC=2EG=2×6=12(厘米),

显然,AD是BC上的高,所以

例2 如图 2-54 所示.△ABC中,∠B,∠C的平分线BE,CF相交于O,AG⊥BE于G,AH⊥CF于H.

(1)求证:GH‖BC;

(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH.

分析 若延长AG,设延长线交BC于M.由角平分线的对称性可以证明△ABG≌△MBG,从而G是AM的中点;同样,延长AH交BC于N,H是AN的中点,从而GH就是△AMN的中位线,所以GH‖BC,进而,利用△ABC的三边长可求出GH的长度.

(1)证 分别延长AG,AH交BC于M,N,在△ABM中,由已知,BG平分∠ABM,BG⊥AM,所以

△ABG≌△MBG(ASA).

从而,G是AM的中点.同理可证

△ACH≌△NCH(ASA),

从而,H是AN的中点.所以GH是△AMN的中位线,从而,HG‖MN,即

HG‖BC.

(2)解 由(1)知,△ABG≌△MBG及△ACH≌△NCH,所以

AB=BM=9厘米,AC=CN=14厘米.

又BC=18厘米,所以

BN=BC-CN=18-14=4(厘米),

MC=BC-BM=18-9=9(厘米).

从而

MN=18-4-9=5(厘米),

说明 (1)在本题证明过程中,我们事实上证明了等腰三角形顶角平分线三线合一(即等腰三角形顶角的平分线也是底边的中线及垂线)性质定理的逆定理:“若三角形一个角的平分线也是该角对边的垂线,则这条平分线也是对边的中线,这个三角形是等腰三角形”.

(2)“等腰三角形三线合一定理”的下述逆命题也是正确的:“若三角形一个角的平分线也是该角对边的中线,则这个三角形是等腰三角形,这条平分线垂直于对边”.同学们不妨自己证明.

(3)从本题的证明过程中,我们得到启发:若将条件“∠B,∠C的平分线”改为“∠B(或∠C)及∠C(或∠B)的外角平分线”(如图2-55所示),或改为“∠B,∠C的外角平分线”(如图2-56所示),其余条件不变,那么,结论GH‖BC仍然成立.同学们也不妨试证.

例3 如图2-57所示.P是矩形ABCD内的一点,四边形BCPQ是平行四边形,A′,B′,C′,D′分别是AP,PB,BQ,QA的中点.求证:A′C′=B′D′.

分析 由于A′,B′,C′,D′分别是四边形APBQ的四条边AP,PB,BQ,QA的中点,有经验的同学知道A′B′C′D′是平行四边形,A′C′与B′D′则是它的对角线,从而四边形A′B′C′D′应该是矩形.利用ABCD是矩形的条件,不难证明这一点.

证 连接A′B′,B′C′,C′D′,D′A′,这四条线段依次是△APB,△BPQ,△AQB,△APQ的中位线.从而

A′B′‖AB,B′C′‖PQ,

C′D′‖AB,D′A′‖PQ,

所以,A′B′C′D′是平行四边形.由于ABCD是矩形,PCBQ是平行四边形,所以

AB⊥BC,BC‖PQ.

从而

AB⊥PQ,

所以 A′B′⊥B′C′,

所以四边形A′B′C′D′是矩形,所以

A′C′=B′D′. ①

说明 在解题过程中,人们的经验常可起到引发联想、开拓思路、扩大已知的作用.如在本题的分析中利用“四边形四边中点连线是平行四边形”这个经验,对寻求思路起了不小的作用.因此注意归纳总结,积累经验,对提高分析问题和解决问题的能力是很有益处的.

例4 如图2-58所示.在四边形ABCD中,CD>AB,E,F分别是AC,BD的中点.求证:

分析 在多边形的不等关系中,容易引发人们联想三角形中的边的不形中构造中位线,为此,取AD中点.

证 取AD中点G,连接EG,FG,在△ACD中,EG是它的中位线(已知E是AC的中点),所以

同理,由F,G分别是BD和AD的中点,从而,FG是△ABD的中位线,所以

在△EFG中,

EF>EG-FG. ③

由①,②,③

例5 如图2-59所示.梯形ABCD中,AB‖CD,E为BC的中点,AD=DC+AB.求证:DE⊥AE.

分析 本题等价于证明△AED是直角三角形,其中∠AED=90°.

在E点(即直角三角形的直角顶点)是梯形一腰中点的启发下,添梯形的中位线作为辅助线,若能证明,该中位线是直角三角形AED的斜边(即梯形另一腰)的一半,则问题获解.

证 取梯形另一腰AD的中点F,连接EF,则EF是梯形ABCD的中位线,所以

因为AD=AB+CD,所以

从而

∠1=∠2,∠3=∠4,

所以∠2+∠3=∠1+∠4=90°(△ADE的内角和等于180°).从而

∠AED=∠2+∠3=90°,

所以 DE⊥AE.

例6 如图2-60所示.△ABC外一条直线l,D,E,F分别是三边的中点,AA1,FF1,DD1,EE1都垂直l于A1,F1,D1,E1.求证:

AA1+EE1=FF1+DD1.

分析 显然ADEF是平行四边形,对角线的交点O平分这两条对角线,OO1恰是两个梯形的公共中位线.利用中位线定理可证.

证 连接EF,EA,ED.由中位线定理知,EF‖AD,DE‖AF,所以ADEF是平行四边形,它的对角线AE,DF互相平分,设它们交于O,作OO1⊥l于O1,则OO1是梯形AA1E1E及FF1D1D的公共中位线,所以

即 AA1+EE1=FF1+DD1.

练习十四

1.已知△ABC中,D为AB的中点,E为AC上一点,AE=2CE,CD,BE交于O点,OE=2厘米.求BO的长.

2.已知△ABC中,BD,CE分别是∠ABC,∠ACB的平分线,AH⊥BD于H,AF⊥CE于F.若AB=14厘米,AC=8厘米,BC=18厘米,求FH的长.

3.已知在△ABC中,AB>AC,AD⊥BC于D,E,F,G分别是AB,BC,AC的中点.求证:∠BFE=∠EGD.

4.如图2-61所示.在四边形ABCD中,AD=BC,E,F分别是CD,AB的中点,延长AD,BC,分别交FE的延长线于H,G.求证:∠AHF=∠BGF.

5.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图2-62所示).求证:∠DEF=∠HFE.

6.如图2-63所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:AP=AQ.

7.已知在四边形ABCD中,AD>BC,E,F分别是AB,CD

温馨提示:答案为网友推荐,仅供参考
相似回答