矩阵行秩,列秩都相等,怎样证明的?

如题所述

引理:

(1)对于m乘n阶矩阵A、n乘s阶矩阵B:若AB=0,则r(A)+r(B)<=n

(2)对于n阶矩阵A、B,有r(A+B)<=r(A)+r(B)

证明上面的两个引理:

(1)因为AB=0,所以B的列向量均为AX=0的解,则B的列向量组的秩不超过AX=0的解空间W的维数,即r(B)<=dimW=n-r(A)(齐次线性方程组解空间维数等于未知量个数减去系数矩阵的秩),从而r(A)+r(B)<=n

(2)设a1,…,an为A的列向量,b1,…,bn为B的列向量,不妨设a1,…,ar为A的列向量的极大线性无关组,b1,…,bl为B的列向量的极大线性无关组,则a1,…,an均可由a1,…,ar线性表出,b1,…,bn均可由b1,…,bl线性表出,从而A+B的列向量a1+b1,…an+bn均可由a1,…,ar,b1,…,bl线性表出,从而r(A+B)<=r(a1,…,ar,b1,…,bl)<=r(a1,…,ar)+r(b1,…,bl)=r(A)+r(B)

现在来证明该题:

利用(1),有r(I+A)+r(I-A)>=r(I+A+I-A)=r(2I)=n

又I-A^2=(I+A)(I-A)=0

从而利用(2)可得r(I+A)+r(I-A)<=n

所以r(A)+r(A-I)=n

扩展资料

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb};

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零。

温馨提示:答案为网友推荐,仅供参考
相似回答