怎么证明函数在某点可导

如题所述

ex和lnx的常见的放缩不等式:X∈R,有ex≥1+x;X∈R,有ex≥ex;X∈R+,有nx≤X-1;X∈R+,有Inx≤1ex。

用导数或图像所示易得上述公式一定成立,在解决y=ex和y=lnx相关的不等式问题中,巧用上述几个放缩公式,可以快速的突破不等式证明的难点。

放缩法是指要让不等式A<B成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种方法便是放缩法,是不等式问题里的一种方法,其他还有比较法,综合法,分析法,反证法,代换法,函数法,数学归纳法等。

由于不等式里面大都含有e^x和lnx,常规求导求最值,往往显得力不从心。这类指数对数混合的不等式证明在全国卷多次出现,处理该类问题有一个更加通用的方法,那就是将e^x和lnx毁尸灭迹放缩成简单的kx+m形式。但实际处理当中放缩具体值往往难以想到。

函数可导的条件:

如果一个函数的定义域为全体实数,即函数在其上都有定义,函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

温馨提示:答案为网友推荐,仅供参考
相似回答