电弧的形成主要是什么所致

如题所述

电弧产生现象原因及特点
  在有触点电器中,触头接通和分断电流的过程中往往伴随着气体放电现象---电弧的产生及熄灭,电弧对电器具有一定的危害。

  电弧属于气体放电的一种形式。气体放电分为自持放电与非自持放电两类,电弧属于气体自持放电中的弧光放电。试验证明,当在大气中开断或闭合电压超过10V、电流超过100MA的电路时,在触头间隙(或称弧隙)中会产生一团温度极高、亮度极强并能导电的气体,称为电弧。由于电弧的高温及强光,它可以广泛应用于焊接、熔炼、化学合成、强光源及空间技术等方面。对于有触点电器而言,由于电弧主要产生于触头断开电路时,高温将烧损触头及绝缘,严重情况下甚至引起相间短路、电器爆炸,酿成火灾,危及人员及设备的安全。所以从电器的角度来研究电弧,目的在于了解它的基本规律,找出相应的办法,让电弧在电器中尽快熄灭。

  我们借助一定的仪器仔细观察电弧,可以发现,除两个极(触头)外,明显的分为3个区域,即近阴极区、近阳极区及弧柱区。

电弧产生原理_电弧产生的原因

  近阴极区的长度约等于电子的平均自由行程。在电场力的作用下正离子向阴极运动,造成此区域内聚集着大量的正离子而形成正的空间电荷层,使阴极附近形成高电场强度。正的空间电荷层形成阴极压降,其数值随阴极材料和气体介质的不同而有所变化,但变化不大,约在10-20V之间。

  近阳极区的长度约等于近阴极区的几倍。在电场力的作用下自由电子向阳极运动,它们聚集在阳极附近而且不断被阳极吸收而形成电流。在此区域内聚集着大量的电子形成负的空间电荷层,产生阳极压降,其值也随阳极材料而异、但变化不大,稍小于阴极压降。由于近阳极区的长度比近阴极区的长,故其电场强度较小。

  阴极压降与阳极压降的数值几乎与电流大小无关,在材料及介质确定后可以认为是常数。

  弧柱区的长度几乎与电极间的距离相同。是电弧中温度最高、亮度最强的区域。因在自由状态下近似圆柱形,故称弧柱区。在此区中正、负电粒子数相同,称等离子区。由于不存在空间电荷,整个弧区的特性类似于一金属导体。每单位弧柱长度电压降相等。其电位梯度E。也为一常数,电位梯度与电极材料、电流大小、气体介质种类和气压等因素有关。

  电弧按其外形分为长弧与短弧。长短之别一般取决于弧长与弧径之比。把弧长大大超过弧径的称为长弧。长弧的电压是近极压降(阴极压降与阳极压降)与弧柱压降之和。若弧长小于弧径,两极距离极短(如几毫米)的电弧称为短弧。此时两极的热作用强烈,近极区的过程起主要作用。电弧的压降以近极压降为主,几乎不随电流变化。

  电弧还可按其电流的性质分为直流电弧和交流电弧。

  电弧的形成原因
  变压器及各种用电设备投入或者退出电网时,都有开关电器来完成。当其在大气中开断时,只要电源电压超过12~20V,被关断的电流超过0.25~1A,在触头间(简称弧隙)就会产生一团温度极高、发出强光、能导电的近似圆柱形的气体,此即为电弧。比如铜触头间的最小生弧电压为13V,最小生弧电流为0.43A,开断220V交流电路时产生电弧的最小电流为0.5A。

  实际上开关电器在工作时,电路的电压和电流大都大于生弧电压和生弧电流。即开断电路时触头间隙中必然产生电弧这一现象。电弧的产生,一方面使电路仍旧保持导通状态,而延迟了电路的开断;另一方面电弧长久不熄还会烧损触头及附近的绝缘,严重时甚至引起开关电器的爆炸和火灾。建立于电弧理论基础上的各种开关电器的构造和工作原理,都和电弧有关,电弧在众多电气设备火灾事故中,作为一个很重要的点火源,已引起消防界的重视。因此,我们必须掌握电弧的产生和熄灭的原理,以便采取正确的措施,防范爆炸和火灾事故的发生。

  电弧能够形成导电通道,是因为触头开始分离时,接触处的接触面积很小,电流密度很大,这就使触头金属材料强烈发热。它首先被融化形成液态金属桥,然后有一部分被汽化,变成金属蒸汽进去弧隙。阴极表面在高温作用下,也产生热电发射,向弧隙发射电子。同时,触头间隙开始很小,电场强度极大,阴极表面内部的电子会在强电场作用下被拉出来,送向弧隙,这叫场强发射。由于场强发射和热电发射在弧隙中形成的自由电子,又被强电场加速,向阳极运动,具有足够动能的电子与弧隙介质中性点产生碰撞游离。这种现象不断发生的结果,是触头间隙中的介质点大量游离,变成大量正、负带电质点,从而使弧隙击穿发弧。

  电子动能大于介质的游离能(即游离电位)时,碰撞游离才能发生,但当电子动能小于介质游离能时.中性质点只能激励。电子在弧隙电场中动能的大小,有电子速度决定,而电子平均速度与介质密度和电场强度有关。在开关电器触头间往往充以游离电位高的氢、六氟化硫等物质,来达到使电弧易于熄灭并难于重燃的目的。开关油作灭弧介质,因为它在电弧高温下,能分解出游离电位高的氢气,易于灭弧。

  碰撞游离是电弧发生的主要原因,触头间的强电场,是电弧发生的必要条件,弧隙介质的热游离则是维持电弧燃烧的主要因素。发生电弧时,弧隙中电子、原子及分子互相碰撞,并不断交换能量,使弧隙中介质温度急剧增加,弧柱温度高达6000~7000℃,甚至10000℃以上。一般气体当温度大于7000~8000℃时,金属蒸汽温度大于3000~4000℃,热游离产生的电子,就足够形成导电通路,使电弧得以维持。

  电弧产生原理图
  电弧产生原理图也是一个简易高压发生器电路,使用一块固定频率脉宽调制电路TL494 产生方波信号控制MOS 管Q1,Q1 上的交变电流在通过串联的黑白电视机高压包T 的时候升压到2k~10kV,升压后经高压包次级串联的高压整流二极管半波整流,输出带直流分量的高频高压(或者说带高频纹波的直流高压也行,两者是一回事)。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-10-24
电弧的产生是碰撞游离所致.
电弧是一种气体放电现象,电流通过某些绝缘介质所产生的瞬间火花。
电弧是一种自持气体导电,其大多数载流子为一次电子发射所产生的电子 。触头金属表面因一次电子发射导致电子逸出,间隙中气体原子或分子会因电离而产生电子和离子。另外,电子或离子轰击发射表面又会引起二次电子发射。当间隙中离子浓度足够大时,间隙被电击穿而发生电弧 。
电弧是由于电场过强,气体发生电崩溃而持续形成等离子体,使得电流通过了通常状态下的绝缘介质(例如空气)所产生的瞬间火花现象。1808年汉弗里·戴维(Humphry Davy)利用此一现象发明第一盏“电灯”—电弧灯(voltaic arc lamp)。
当用开关电器断开电流时,如果电路电压不低于10—20伏,电流不小于80~100mA,电器的触头间便会产生电弧。

因此,在了解开关电器的结构和工作情况之前,首先来看看其是如何产生和熄灭的。

电弧的形成是触头间中性质子(分子和原子)被游离的过程。开关触头分离时,触头间距离很小,电场强度E很高(E=U/d)。当电场强度超过3×10^6V/m时,阴极表面的电子就会被电场力拉出而形成触头空间的自由电子。这种游离方式称为:强电场发射。

从阴极表面发射出来的自由电子和触头间原有的少数电子,在电场力的作用下向阳极作加速运动,途中不断地和中性质点相碰撞。只要电子的运动速度v足够高,电子的动能A=1/2mv^2足够大,就可能从中性质子中打出电子,形成自由电子和正离子。这种现象称为碰撞游离。新形成的自由电子也向阳极作加速运动,同样地会与中性质点碰撞而发生游离。碰撞游离连续进行的结果是触头间充满了电子和正离子,具有很大的电导;在外加电压下,介质被击穿而产生电弧,电路再次被导通。

触头间电弧燃烧的间隙称为弧隙。电弧形成后,弧隙间的高温使阴极表面的电子获得足够的能量而向外发射,形成热电场发射。同时在高温的作用下(电弧中心部分维持的温度可达10000℃以上),气体中性质点的不规则热运动速度增加。当具有足够动能的中性质点相互碰撞时,将被游离而形成电子和正离子,这种现象称为热游离。

随着触头分开的距离增大,触头间的电场强度E逐渐减小,这时电弧的燃烧主要是依靠热游离维持的。

在开关电器的触头间,发生游离过程的同时,还发生着使带电质点减少的去游离过程。

主要分类
〈1〉按电流种类可分为:交流电弧、直流电弧和脉冲电弧。

〈2〉按电弧的状态可分为:自由电弧和压缩电弧(如等离子弧)。

〈3〉按电极材料可分为:熔化极电弧和不熔化极电弧。

主要作用
电弧是高温高导电率的游离气体,它不仅对触头有很大的破坏作用,而且使断开电路的时间延长。

主要特点
导电性强、能量集中、温度高、亮度大、质量轻、易变性等。

电弧可作为强光源如弧光灯,紫外线源如太阳灯或强热源如电弧炉。

电弧具有热效应。
两个电极在一定电压下由气态带电粒子,如电子或离子,维持导电的现象。激发试样产生光谱。电弧放电主要发射原子谱线,是发射光谱分析常用的激发光源。通常分为直流电弧放电和交流电弧放电两种。

气体放电中最强烈的一种自持放电。当电源提供较大功率的电能时,若极间电压不高(约几十伏),两极间气体或金属蒸气中可持续通过较强的电流(几安至几十安),并发出强烈的光辉,产生高温(几千至上万度),这就是电弧放电。电弧是一种常见的热等离子体(见等离子体应用)。

电弧放电最显著的外观特征是明亮的弧光柱和电极斑点。电弧的重要特点是电流增大时,极间电压下降,弧柱电位梯度也低,每厘米长电弧电压降通常不过几百伏,有时在1伏以下。弧柱的电流密度很高,每平方厘米可达几千安,极斑上的电流密度更高。
第2个回答  2020-10-24
电弧的形成主要是电子放电所导致的。
电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。电弧是一种自持气体导电(电离气体中的电传导),其大多数载流子为一次电子发射所产生的电子。触头金属表面因一次电子发射(热离子发射、场致发射或光电发射)导致电子逸出,间隙中气体原子或分子会因电离(碰撞电离、光电离和热电离)而产生电子和离子。另外,电子或离子轰击发射表面又会引起二次电子发射。当间隙中离子浓度足够大时,间隙被电击穿而发生电弧。
开关电器的基本功能就是能够在所要求的短时间内分合电路,即起所谓开关的作用,机械式开关设备是用触头来开断电路电流的,在大气中开断电路时,只要电压超过12—20V,被开断的电流超过0.25—1A,在触头间隙(也称弧隙)中通常产生一团温度极高、发出强光且能够导电的近似圆柱形的气体,这就是电弧。
一直到电弧熄灭,触头间隙成为绝缘介质后,电流才被开断。发生在开关设备中的电弧简称为开关电弧。这种开关电弧现象,也即电弧燃烧和熄灭过程是开关电器最重要的内容。
开关电弧是等离子体的一种形式,属低温等离子体。开关电器中电弧的熄灭就是要积极地利用电弧等离子体的温度控制来实现,对于高电压大电流电路来说、只有产生电弧、才能实现对电弧等离子体的温度控制。
第3个回答  2020-10-24
一般意义上的过电压保护器是对工频过电压进行保护的,所谓工频过电压,往往产生在操作过程中,如开关开断时电弧未过零就被开断时会有过电压,回路开断时由于回路波阻抗不同而产生电压反射波叠加的操作过电压等等,这些过电压都是工频过电压,也就是其电压波形的频率还是维持50HZ没变。

避雷器是保护雷电过电压的,这种过电压波形前端很陡,频率很高,但后续电流很小,避雷器可以将雷电波的峰值泄放 从而保证其后面的电器安全

断路器切断通有电流的回路时,只要电源电压大于10~20V,电流大于80~100mA,在动、静触头分开瞬间,触头间隙就会出现电弧。此时,触头虽然已分开,但是电路中的电流还在继续流通,只有熄灭电弧,电路才真正断开。本节介绍开关电弧的基本知识与各种灭弧方法的原理。

一、电弧的形成
电弧的产生和维持是触头间隙的绝缘介质的中性质点(分子和原子)被游离的结果,游离是指中性质点转化为带电质点。电弧的形成过程就是气态介质或液态介质高温气化后的气态介质向等离子体态的转化过程。因此,电弧是一种游离气体的放电现象。
强电场发射是触头间隙最初产生电子的主要原因。在触头刚分开的瞬间,间隙很小,间隙的电场强度很大,阴极表面的电子被电场力拉出而进入触头间隙成为自由电子。
电弧的产生是碰撞游离所致。阴极表面发射的电子和触头间隙原有的少数电子在强电场作用下,加速向阳极移动,并积累动能,当具有足够大动能的电子与介质的中性质点相碰撞时,产生正离子与新的自由电子,这种现象不断发生的结果,使触头间隙中的电子与正离子大量增加,它们定向移动形成电流,介质强度急剧下降,间隙被击穿,电流急剧增大,出现光效应和热效应而形成电弧。
热游离维持电弧的燃烧。电弧形成后,弧隙温度剧增,可达6000℃~10000℃以上。在高温作用下,弧隙中性质点获得大量的动能,且热运动加剧,当其相互碰撞时,产生正离子与自由电子。这种由热运动而产生的游离叫热游离。一般气体游离温度为9000℃~10000℃,金属蒸气热游离温度约为4000~5000℃。因此热游离足以维持电弧的燃烧。

二、电弧的熄灭
在中性质点发生游离的同时,还存在着使带电质点不断减少的去游离。去游离的主要形式是复合与扩散。
1.复合
复合是异性带电质点彼此的中和。复合速率与下列因素有关:
1)带电质点浓度越大,复合机率越高。当电弧电流一定时,弧截面越小或介质压力越大,带电质点浓度也越大,复合就强。故断路器采用小直径的灭弧室,可以提高弧隙带电质点的浓度,增强灭弧性能;
2)电弧温度越低,带电质点运动速度越慢,复合就容易。故加强电弧冷却,能促进复合。在交流电弧中,当电流接近零时,弧隙温度骤降,此时复合特别强烈;
3)弧隙电场强度小,带电质点运动速度慢,复合的可能性就增大。所以提高断路器的开断速度,对复合有利。
2.扩散
扩散是指带电质点从弧隙逸出进入周围介质中的现象。扩散去游离主要有两种。
l)温度扩散。弧隙与其周围介质的温差越大,扩散越强。用冷却介质吹弧,或电弧在周围介质中运动,都可增大电弧与周围介质的温差,加强扩散作用。
2)浓度扩散。电弧与周围介质离子的浓度相差越大,扩散就越强烈。
当游离大于去游离时,电子与离子浓度增加,电弧加强;当游离与去游离相等时,电弧稳定燃烧;当游离小于去游离时,电弧减少以致熄灭。所以要促使电弧熄灭就必须削弱游离作用,加强去游离作用。断路器综合利用上述原理,制成各式灭弧装置,能迅速而有效地熄灭短路电流产生的强大电弧。

三、交流电弧的开断
交流电弧电流每周自然过零两次。在电流过零时,电弧暂时熄灭。因此熄灭交流电弧,就是让交流电弧过零后电弧不重燃。
交流电弧过零时自然熄灭,过零后是否重燃,取决于电源加在弧隙上的恢复电压与弧隙介质强度的耐压能力的恢复情况。
弧隙介质强度恢复过程是指电弧电流过零时电弧熄灭,而弧隙的绝缘能力要经过一定时间才能恢复到绝缘的正常状态的过程,此过程称为弧隙介质强度的恢复过程。主要由断路器灭弧装置的结构和灭弧介质的性质决定。
弧隙电压恢复过程是指电弧电流过零时电弧熄灭,电源电压施加于弧隙上的电压将从不大的熄弧电压逐渐增大直到电源电压的过程,称为弧隙电压恢复过程。主要取决于线路电路参数(电阻、电容、电感)和负荷性质,一般电阻性电路的电弧最易熄灭。
交流电弧的熄灭条件是,交流电弧过后,弧隙介质强度恢复过程永远大于弧隙电压恢复过程。

四、灭弧的基本方法
灭弧的基本方法就是加强去游离提高弧隙介质强度的恢复过程,或改变电路参数降低弧隙电压的恢复过程,目前开关电器的主要灭弧方法有:
1.利用介质灭弧
弧隙的去游离在很大程度上,取决于电弧周围灭弧介质的特性。六氟化硫(SF6)气体是很好的灭弧介质,其电负性很强,能迅速吸附电子而形成稳定的负离子,有利于复合去游离,其灭弧能力比空气约强100倍;真空(压强在0.013Pa以下)也是很好的灭弧介质,因真空中的中性质点很少,不易于发生碰撞游离,且真空有利于扩散去游离,其灭弧能力比空气约强15倍。
采用不同介质可以制成不同的断路器,如油断路器、六氟化硫断路器和真空断路器。
2.利用气体或油吹动电弧
吹弧使弧隙带电质点扩散和冷却复合。在高压断路器中利用各种灭弧室结构形式,使气体或油产生巨大的压力并有力地吹向弧隙。吹弧方式主要有纵吹与横吹两种。纵吹是吹动方向与电弧平行,它促使电弧变细;横吹是吹动方向与电弧垂直,它把电弧拉长并切断。
3.采用特殊的金属材料作灭弧触头
采用熔点高、导热系数和热容量大的耐高温金属作触头材料,可减少热电子发射和电弧中的金属蒸气,得到抑制游离的作用;同时采用的触头材料还要求有较高的抗电弧、抗熔焊能力。常用触头材料有铜钨合金、银钨合金等。
4.电磁吹弧
电弧在电磁力作用下产生运动的现象,叫电磁吹弧。由于电弧在周围介质中运动,它起着与气吹的同样效果,从而达到熄弧的目的。这种灭弧的方法在低压开关电器中应用得更为广泛。
5.使电弧在固体介质的狭缝中运动
此种灭弧的方式又叫狭缝灭弧。由于电弧在介质的狭缝中运动,一方面受到冷却,加强了去游离作用;另一方面电弧被拉长,弧径被压小,弧电阻增大,促使电弧熄灭。
6.将长弧分隔成短弧
当电弧经过与其垂直的一排金属栅片时,长电弧被分割成若干段短弧;而短电弧的电压降主要降落在阴、阳极区内,如果栅片的数目足够多,使各段维持电弧燃烧所需的最低电压降的总和大于外加电压时,电弧就自行熄灭。另外,在交流电流过零后,由于近阴极效应,每段弧隙介质强度骤增到150~250V,采用多段弧隙串联,可获得较高的介质强度,使电弧在过零熄灭后不再重燃。
7.采用多断口灭弧
高压断路器每相由两个或多个断口串联,使得每一断口承受的电压降低,相当于触头分断速度成倍地提高,使电弧迅速拉长,对灭弧有利。
8.提高断路器触头的分离速度
提高了拉长电弧的速度,有利于电弧冷却复合和扩散。
第4个回答  2020-10-24
电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。电弧是一种自持气体导电(电离气体中的电传导),其大多数载流子为一次电子发射所产生的电子 。

触头金属表面因一次电子发射(热离子发射、场致发射或光电发射)导致电子逸出,间隙中气体原子或分子会因电离(碰撞电离、光电离和热电离)而产生电子和离子。另外,电子或离子轰击发射表面又会引起二次电子发射。当间隙中离子浓度足够大时,间隙被电击穿而发生电弧 。
相似回答