请问这题隐函数求导的题目怎么做?

请问这题隐函数求导的题目怎么做?需要具体的过程,谢谢!

    两边对x求导

    cos(xy)·(y+xy')=[y/(x+e)]·[y+(x+e)y']/y²=[y+(x+e)y']/y(x+e)

    y(x+e)cos(xy)·(y+xy')=y+(x+e)y' 

    (xy²+ey²)cos(xy)-y=[(x+e)-(x²y+exy)cos(xy)]y'

    y'=[(xy²+ey²)cos(xy)-y]/[(x+e)-(x²y+exy)cos(xy)]

    sin(0·y)=ln(e/y)+1→y=e²

    y'(0)=[e³-e²]/[e]=e²-e

    ①=(xy²+ey²)cos(xy)-y→①(0)=e³-e²

    ①'=(y²+2xyy'+2eyy')cos(xy)+(xy²+ey²)sin(xy)·(y+xy')→①'(0)=e⁴+2e·e²(e³-e²)

    ②=(x+e)-(x²y+exy)cos(xy)→②(0)=e

    ②'=1-(2xy+x²y'+ey+exy)cos(xy)+(x²y+exy)sin(xy)·(y+xy')→②'(0)=1-e³

    y''(0)=[①'(0)·②(0)-①(0)·②'(0)]/②²(0)

    =[(2e⁶-2e⁵+e⁴)·e-(e³-e²)·(1-e³)]/e²

    =2e⁵-2e⁴+e³-(e-1)(1-e³)

    =2e⁵+e⁴-e+1

    (计算过程较繁,不知有无错漏,但计算方法应该就是这样了)

温馨提示:答案为网友推荐,仅供参考
相似回答