两边对xæ±å¯¼
cos(xy)·(y+xy')=[y/(x+e)]·[y+(x+e)y']/y²=[y+(x+e)y']/y(x+e)
y(x+e)cos(xy)·(y+xy')=y+(x+e)y'
(xy²+ey²)cos(xy)-y=[(x+e)-(x²y+exy)cos(xy)]y'
y'=[(xy²+ey²)cos(xy)-y]/[(x+e)-(x²y+exy)cos(xy)]
sin(0·y)=ln(e/y)+1ây=e²
y'(0)=[e³-e²]/[e]=e²-e
â =(xy²+ey²)cos(xy)-yââ (0)=e³-e²
â '=(y²+2xyy'+2eyy')cos(xy)+(xy²+ey²)sin(xy)·(y+xy')ââ '(0)=e⁴+2e·e²(e³-e²)
â¡=(x+e)-(x²y+exy)cos(xy)ââ¡(0)=e
â¡'=1-(2xy+x²y'+ey+exy)cos(xy)+(x²y+exy)sin(xy)·(y+xy')ââ¡'(0)=1-e³
y''(0)=[â '(0)·â¡(0)-â (0)·â¡'(0)]/⡲(0)
=[(2e⁶-2e⁵+e⁴)·e-(e³-e²)·(1-e³)]/e²
=2e⁵-2e⁴+e³-(e-1)(1-e³)
=2e⁵+e⁴-e+1
(计ç®è¿ç¨è¾ç¹ï¼ä¸ç¥ææ éæ¼ï¼ä½è®¡ç®æ¹æ³åºè¯¥å°±æ¯è¿æ ·äº)