热力学中为什么要引入吉布斯自由能的概念,它的物理含义是什么?

如题所述

首先从熵开始,热力学第二定律的克劳修斯表述告诉我们,对于一个孤立绝热体系(无传热,无传质,无体积变化)的自发过程,其熵变都是大于等于零的。这样用熵这个状态函数就可以很容易地在数学上判定任何孤立绝热体系的演化方向,这个我相信你已经理解了。但是现实体系大多数都不是孤立绝热的,而多数时候是等温等容(比如控温刚性反应釜中的反应)或是等温等压(比如敞口烧杯中的反应)的。破坏了孤立绝热的条件,单纯用熵变来判定方向就失效了。但是人们又希望能有一个类似于熵的状态函数来帮助我们判定等容或等压反应的方向,那该怎么办呢?方法是假想一个近乎无限大的处于平衡态的环境(E),并使之与你考虑的体系(S)相接触,S本身的体积和能量可以变化,但S只能和E发生体积和能量交换,所以E+S总体上体积和能量都不发生变化,是孤立绝热的,那么就可以针对E+S使用熵增原理分析反应方向。这种分析的结果就导致了两个自由能函数(对于等容体系是赫尔姆兹自由能,对于等压体系是吉布斯自由能)的诞生。具体的推导过程请参见你的热力学课本。简而言之,由于E无限大,E的变化基本可以认为是可逆的,这样环境E的熵变(dS)完全可以通过体系和环境的传热来计算(dQ/T),而dQ又可以通过能量守恒和体系S的内能和体积变化联系起来,所以最终,E+S的总熵变,可以写成一个体系S的熵变以及体系S的内能和体积的函数,这个函数就是自由能。

吉布斯

你现在应该能够理解了,自由能之所以能用于判定等容/等压体系的反应方向,是因为它等价于环境和体系的总熵变(实际上为了让自由能具有能量的量纲,所以在总熵变的前面乘了一个温度T)。那么我们为什么不直接考虑总熵变,而要引入自由能这个量呢?因为直觉告诉我们一个体系的反应方向,应该可以由这个体系本身决定,而和周围环境的具体细节无关,环境E的引入纯粹是分析推导的需要,我们不希望在最终的结果中保留任何关于环境E的具体变量(比如E的熵变)。而自由能(E-TS, E+PV-TS)则纯粹是体系本身的状态函数,在数学上和环境无关,在理论上要漂亮得多,在使用上也方便得多。这就是自由能引入的基本思路,我认为还是很自然的。另外,可以证明自由能还有一个意义,就是它实际上是一个体系在等温等容或等温等压条件下从状态A到状态B,对环境的最大做功,这个显然也是人们在设计热机时非常感兴趣的一个值。 至于你其后的几个问题:熵增原理等价于热力学第二定律,是整个平衡态热力学大厦的基础之一,当然已经被广泛认同。违反热力学第二定律的第二类永动机已经成为公认的伪科学。至于宇宙的问题,这个我就不专业了。如何描述宇宙依然是一个充满争议的问题,但是宇宙肯定不是我们通常意义上所理解的平衡态,所以把平衡态热力学套用在宇宙上的时候必须非常小心。最后再说一句,就算热寂论是对的,你也不能把ΔG套在宇宙上啊?宇宙也许是一个孤立绝热体系,但绝对不是一个等温等压体系啊

如果是回答课本,为了研究非隔离系统在等温等压下的能量及熵变化,所以引入吉布斯自由能。

温馨提示:答案为网友推荐,仅供参考
相似回答