欧拉定理是什么

如题所述

对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n)
证明:
首先证明下面这个命题:
对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是φ(n)个n的素数,且两两互素,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)}
则S = Zn
1) 由于a,n互质,xi也与n互质,则a*xi也一定于p互质,因此
任意xi,a*xi(mod n) 必然是Zn的一个元素
2) 对于Zn中两个元素xi和xj,如果xi ≠ xj
则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。
所以,很明显,S=Zn
既然这样,那么
(a*x1 × a*x2×...×a*xφ(n))(mod n)
= (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)
= (x1 × x2 × ... × xφ(n))(mod n)
考虑上面等式左边和右边
左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)
右边等于x1 × x2 × ... × xφ(n))(mod n)
而x1 × x2 × ... × xφ(n)(mod n)和n互质
根据消去律,可以从等式两边约去,就得到:
a^φ(n) ≡ 1 (mod n)
推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)
费马定理:
a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)
证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。
同样有推论:对于不能被质数p整除的正整数a,有a^p ≡ a (mod p)
温馨提示:答案为网友推荐,仅供参考
第1个回答  2010-01-24
欧拉有很多定理
一个拓扑学上的,数论上的(费玛小定理的一个推广),分析学上有一堆

你想知道哪一个本回答被网友采纳
第2个回答  2010-01-25
e^(ix) = cos(x) + i*sin(x)
第3个回答  2021-03-12