奇偶性的定义

如题所述

设函数f(x)的定义域D关于原点对称;
⑴如果对于函数定义域D内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
⑵如果对于函数定义域D内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
⑶如果对于函数定义域D内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
⑷如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义、变式。
变式:奇:f(x)+f(-x)=0; f(x)*f(-x)=-f^2(x); f(x)/f(-x)=-1.
偶:f(x)-f(-x)=0; f(x)*f(-x)=f^2(x); f(x)/f(-x)=1.

温馨提示:答案为网友推荐,仅供参考