地震波层析技术

如题所述

地学层析成像技术(Geotomography,简称GT)是地球物理学与层析成像技术相结合的产物,它是利用地震波或电磁波在地下介质中的传播特性,通过反演算法来重建地下介质的分布图像。目前,GT技术已广泛用于地球物理学的多个研究领域,从地球科学研究中地球内部精细结构的探测,石油勘探开发中岩性圈闭的寻找,金属矿勘探中深部盲矿的勘查,到工程、灾害和环境地质中查明地下构造、裂隙等的分布规律,它已发展成为研究地下精细结构的一种有效手段。

6.3.2.1 基本原理

层析成像技术是根据对物体外部获取的某种物理量的测定值(或称投影)进行处理以重建物体内部图像的一种技术。所谓层析成像,是对物体进行逐层剖析成像,相当于把物体切成片。用波去穿透物体,让波带出关于物体内部的信息,通过对这些信息的处理来重建物体的内部图像。

从物体内部图像重建的角度看,一物体切片的图像是两个空间变量(x,y)的函数,称为图像函数,记为f(x,y)。用不同方向的入射波穿过物体,观测到的波场信息至少是入射波方向θ和观测点位置ρ两个变量的函数,称为投影函数,可记为u(θ,ρ)。1917年奥地利数学家Radon证明,已知所有入射角的投影函数u(θ,ρ)可以恢复惟一的图像函数f(x,y),人们称之为Radon变换,它成为层析成像的理论基础。

从物理角度来看,各种波动(地震波、电磁波等)在时间和空间上都是连续的。当它们在介质中传播时,由于介质物性上的差异(如密度、速度、介电常数、电导率等)使得它们的传播速度的大小及方向发生变化,能量吸收也因介质而异。因此,当波穿过某一物体时,必定会把物体内部的物性参数的信息携带到物体外部来,只要在物体外部测得波穿过物体后的有关参数(即投影函数),通过适当的反演方法便可重建物体内部图像。

因此,从本质而言,层析成像属于反演问题,因为它是通过参数的观测结果来求解参数的空间分布。一般来说,层析成像方法适用于能以数据形式获得某种参数(例如地震波传播时间等)的条件,但入射波必须穿透物体并且参数的变化应该能测得出来。

图6.3.4 跨孔地震层析成像观测系统

6.3.2.2 数据采集

在地球物理层析成像中,一般都是将待成像的区域划分为许多单元组成的网格,单元被称为“像元”。假定每个像元为常数,它代表了图像函数f(x,y)。像元的大小取决于诸多因素,如震源和接收器的间距等。由发射源发射出的具有一定方向性的射束被称为“射线”,射线穿过成像区域到达接收点,接收器记录到变化了的信号。为了获得多方向的射线覆盖,数据采集常在物体的一侧布设线性发射源排列,而在另一侧沿平行发射源排列布设接收器排列。这实际上是跨孔排列(图6.3.4所示),它是数据采集方法中最典型的一种。

6.3.2.3 成像方法

地震层析成像方法大致可分为两种类型:一种是基于射线理论的图像重建技术,在数学上也就是由一个函数的线积分反求这个函数的问题,它可以化为相似的代数方程组。走时反演成像和振幅反演成像均属这种方法。当射线为直线时,这类方法比较成熟。在实际应用中,由于客观条件的限制,经常会遇到数据不全的问题。另外,当必须考虑射线弯曲的情况时,理论上还有不少困难。另一种是基于波动方程反演的散射(或衍射)层析成像方法,在数学上它属于解偏微分方程反问题,波场成像属此类方法。

走时反演成像方法是目前使用较为成熟的方法,主要包括反投影法(BPT)、代数重建法(ART)、联合迭代重建法(SIRT)、共轭梯度最小二乘法(CGLS)和正交分解最小二乘法(LSQR)等。在工程、环境调查中,通常在现场需要对数据进行处理和解释,故一般选用较为简单的成像方法。

6.3.2.4 在工程和环境调查中的应用

跨孔地震层析成像在岩溶勘察中的应用,是基于完整灰岩与岩溶(包括充填物)、溶蚀裂隙及上覆土层之间存在明显的弹性纵波波速差异。一般来说,完整石灰岩的弹性纵波速度大于4500 m/s,而溶蚀裂隙发育灰岩的弹性纵波波速则在2800~4500 m/s之间,岩溶充填物及上覆土层的弹性纵波波速小于2800 m/s。因此,在岩溶发育地区开展地震层析成像勘察具有良好的地球物理前提。

例如,在位于广州市雅岗与佛山南海市和顺之间的广合大桥,设计有4个主桥墩,32根冲孔灌注桩。该桥基岩为石炭纪灰岩,基岩面埋深约为19~36 m,上部覆盖层为第四纪冲淤积、残积淤泥、砂及粘土,基岩面起伏变化大,岩溶裂隙非常发育。在主桥墩施工中采用跨孔地震层析成像方法对4个主桥墩进行勘察。勘察要求查明主桥墩桩位及桩周基岩面埋深,岩溶裂隙发育及分布情况。勘察深度范围在岩面以上,-5~-50 m高程。要求分辨线性尺度1.0 m以上的溶洞及溶蚀裂隙发育带。

勘察中共布置了26个钻孔,可组合成46对跨孔地震层析成像剖面。跨孔距最大为16.02 m,最小为5.95 m。每对剖面测试范围为基岩面以上1/2跨孔距(且不小于5.0 m)至孔底,激发接收点距为1.0 m。震源主频高于500 Hz,传感器频响范围为5~4000 Hz,接收仪器频响为10~4000 Hz,采样间隔为31.25 μs。

对46对跨孔地震层析成像剖面走时数据进行处理、反演,得到了46对跨孔地震层析成像纵波速度色谱图。其中L26剖面跨孔地震层析成像(纵波)速度色谱图(如图6.3.5所示)。从图中可以看出,速度色谱图从上至下大致可以分为3个速度带。根据纵波速度与土层、溶洞、溶蚀裂隙发育及完整(或基本完整)灰岩的相关关系并结合两侧钻孔资料,可将L26剖面跨孔地震CT速度色谱图从上至下解释为3个地质单元:覆盖层、岩溶及溶蚀裂隙发育带(局部含完整岩块)、完整(或基本完整)灰岩(局部偶有小溶洞或溶蚀裂隙)。同理对其他45对CT剖面分别作了地质解释,推荐了各根桩的桩端持力层高程,同时指出了各根桩施工中可能碰到的不良地质体情况。

图6.3.5 大桥L26测线地震CT速度色谱图及地质解释剖面

温馨提示:答案为网友推荐,仅供参考
相似回答