地震层析成像的理论基础

如题所述

(一)地震层析成像的数学理论

1917年,奥地利数学家拉冬(J.Radon)对于由投影重建图像的思想首次做出了严格的数学表达,解决了分布函数与投影之间的变换关系问题。

1.拉冬变换

在二维域中存在一未知的连续函数f(x,y),令Ox[y]坐标系逆时针旋转θ角,形成O[vu]坐标系。将f(x,y)沿平行于u轴方向的射线Li做线积分,并设其为Pθ(ti),经变换后得Pθ(ti)为f(x,y)在角度为θ时沿射线Li的投影值,沿众射线Li(i=1,2,…)投影,构成投影函数

固体地球物理学概论

式(4-43)即为拉冬正变换,改变θ角得到一系列投影函数Pθ(t)。

将投影函数与某一核函数褶积求得褶积后的投影函数Gθ(t),再做反投影求得目标函数f(x,y),即拉冬逆变换。投影成像应采用滤波反投影形成的拉冬逆变换为

固体地球物理学概论

其中s=ycosθ—xsinθ。实际应用时,要将式(4-44)离散化、有限化。

2.傅里叶(Fourier)投影定量

设目标函数为f(x,y),投影函数为P(r,θ),并满足拉冬变换,求得投影函数的一维傅里叶变换P*(u,θ)和二维傅里叶变换f*(u,θ),而P*(u,θ)=f*(u,θ)式为傅里叶投影定理,据此求取研究区的速度场。

(二)地震层析成像的物理基础——射线理论

射线方程和界面条件(Cerveny et al.,1977;刘福田等,1989):假定地球是各向同性、完全弹性的成层介质,在利用走时重建速度图像时,取地震波的高频近似解,且将地震震源视作点源。设波速为v,则由震源i至接收点j的走时可写成

固体地球物理学概论

式中:Lij为射线路径。在球面坐标系中,路径的微分方程为

固体地球物理学概论

式中P=(Pr,Pθ,Pφ)为慢度向量:

固体地球物理学概论

式中:cosγr、cosγθ、cosγφ为射线的方向余弦,有cos2γr+cos2γθ+cos2γφ=1。

式(4-44)是在波速为连续函数假定下导出的,地球内部存在界面,则波入射后产生反射和折射。设两界面之间的地层内部是连续的,只要能够确定界面条件,就可在分层介质中进行射线追踪。界面条件可用相位匹配法导出,在球坐标系中的折射波有

固体地球物理学概论

式中:角标i表示入射波,j表示折射波;v1和v2分别为入射介质和折射介质的波速;sgn()为符号函数。

射线宽度(Cerveny et al.,1983):根据式(4-45)~式(4-48),不难得到地震波的走时。这就意味着,已经假定式(4-45)是在三维空间上的射线上求积分;理论上只有当无限高频时才能认为存在无限窄的射线(波长λ→0),而射线解对介质是“绝对”分辨的。由于地震波频率总是有限的,因此分辨能力也是有限的。为解决这个矛盾,在地震波的高频近似解中需要对标准射线方法进行修正。例如,可以把射线视作中心射线为费马射线的高斯射线,其宽度可用距中心射线的距离d(s)来度量。显然,射线宽度d(s)将直接影响地震层析成像的分辨率。根据惠更斯原理,一个波前的每个面元可看作一个产生球面波的次级扰动中心,且以后任意时刻波前的位置是所有这些子波的包络面。按照惠更斯菲涅尔原理,只当OAP—ODP≤λ/4时,次生波在P波处才产生相长干涉,以致A处的结构要影响到P处观测到的波场。据此,得到路径长度为L射线的最大宽度dm(s)近似为

固体地球物理学概论

例如,当λ=10km时,对长度为3000km和10000km的射线,其最大宽度dm(s)各约为61km和112km;当λ=5km时,对长度为100km和500km的射线,其最大宽度各约为8km和18km。这表明,远震和区域地震数据其水平分辨率是+分不同的。这在地震层析成像中须予以重视。

温馨提示:答案为网友推荐,仅供参考
相似回答