(1)f(x)=e^(1-x)·(-a+cosx)
f'(x)=-e^(1-x)·(-a+cosx)-e^(1-x)·sinx
=-e^(1-x)·(-a+cosx+sinx)
=-e^(1-x)·[-a+â2sin(x+Ï/4)]
f(x)åå¨åè°éååºé´ åºé´å
f'(x)<0
âµ-e^(1-x)<0
â´-a+â2sin(x+Ï/4)>0
a<â2sin(x+Ï/4)
â´aâ(-â2,+â)
(2)a=0 f(x)=e^(1-x)·cosx
令g(x)=f(-1-x)+2f'(x)·cos(x+1)
=e^(2+x)·cos(x+1)-2e^(1-x)·(cosx+sinx)cos(x+1)
=cos(x+1)·[e^(2+x)-2e^(1-x)·(cosx+sinx)]
令h(x)=e^(2+x)-2e^(1-x)·(cosx+sinx)
h'(x)=e^(2+x)+2e^(1-x)·(cosx+sinx)-2e^(1-x)(-sinx+cosx)
=e^(2+x)+4e^(1-x)sinx
h''(x)=e^(2+x)+4e^(1-x)(cosx-sinx)
âµ1/2<â2/2 â´cosx-sinx>0
â´xâ[-1,1/2] h''(x)>0 h'(x)åè°éå¢
h'(-1)<0 h'(-Ï/6)>0
â´æ ¹æ®è¿ç»å½æ°é¶ç¹å®çï¼h(x)å¨ç»å®åºé´æä¸åªæä¸ä¸ªé©»ç¹ãé©»ç¹x₀â(-1,-Ï/6)
é©»ç¹å¤ï¼e^(2+x₀)=-4e^(1-x₀)sinx₀
å¯ä»¥æ ¹æ®å¯¼æ°å¼æ£è´çååï¼å¤æåºé´å
é©»ç¹ä¸ºæå°å¼ç¹
æå°å¼=-4e^(1-x₀)sinx₀-2e^(1-x₀)·(cosx₀+sinx₀)
=-e^(1-x₀)(2cosx₀+6sinx₀)
=-2â10e^(1-x₀)[sin(x₀+Ï)] Ï=arctan(1/3)<Ï/6
â´sin(x₀+Ï)<0âæå°å¼>0
â´h(x)â¥æå°å¼>0
âµxâ[-1,1/2] x+1â[0,3/2] 3/2<Ï/2
â´cos(x+1)>0
â´f(-1-x)+2f'(x)·cos(x+1)=h(x)·cos(x+1)>0 ææç«ã
温馨提示:答案为网友推荐,仅供参考